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Abstract—Lately, Bluetooth Low Energy (BLE) beacon has

attracted a lot of interests for its capabilities in enhancing

the interaction between smart things in the Internet of Things

(IoT) ecosystem via proximity approach. Even though Proximity

sensing is capable of delivering a correct interaction, it might

have a problem for explicit interaction when exact distance

estimation is required. Considering those interactive applications

which are distance-dependent, this paper proposed an optimized

support vector machine (O-SVM) on the cloud for distance

estimation and a Kalman filter (KF) on the edge to obtain

a near true RSS value from a list of RSS measurements.

Four benchmark functions (i.e., two from Industries and two

Machine Learning Techniques) have been used for performance

evaluation. Simulation with real signal samples was conducted

to verify the performance of our proposed algorithm. Besides

examining the performance gain of our proposed solution over

the four benchmark functions, we also implemented the proposed

solution on a smartphone for practical testing to demonstrate its

feasibility. The proposed solution not only outperforms the rest

with significant performance gain, i.e., > 50% error reduction

compared to the benchmark functions. Furthermore, practical

implementation verified that our proposed approach is able to

return the estimate distance in less than 1s, such real-time

response is desirable for many delay-sensitive applications.

Index Terms—Distance estimation, BLE Beacon, Kalman Fil-

ter, Support Vector Machine, Internet of things, interactivity

I. INTRODUCTION

In the Internet of things (IoT) ecosystem, as the things
getting smarter and smarter with diverse kinds of embedded
sensors and communication capabilities, an accurate interac-
tion becomes the key element towards a better IoT ecosystem,
making whole the smartness of the things besides sensing and
remote controlling [1] [2] [3]. One vital factor for the smart
things to achieve accurate interaction lies in their ability in
estimating their distance to other things. Fig. 1 depicts an
interactive application that consists of two flying drones: one is
mounted with a projector and another one carrying the display
[4]. Obviously, these two drones need to estimate their distance
to each other to ensure a clear content being displayed on the
screen. Unmanned vehicles, on the other hand, can be very
dangerous to the pedestrian and other vehicles on the road
if they are unable to derive an accurate distance estimation;
having said that, good distance estimation is, inevitably, crucial
for many interactive applications. Specifically, in reshaping
the current IoT ecosystem from only sensing, monitoring and
controlling to a smarter interaction between living things as
well as non-living things.

𝒅𝒕

Fig. 1. Interaction between two smart things (i.e., the flying projector and
flying display) [4].

In recent years, the ubiquity of wireless communications
embedded in current smart things has attracted a vast interest
in exploiting Radio Signal Strength (RSS) for distance esti-
mation [5] [6]. RSS-based distance estimation is based on the
ideal assumption of a path loss model which states that RSS
decays as the distance between two smart things increases,
provided that these smart things are within the line-of-sight [7].
While RSS is widely available and can be simply measured by
most wireless devices, RSS is known by its unreliability for
distance estimation especially in an indoor environment where
the signals are subject to serious fluctuation in consequence
to shadowing and multipath fading [8] [9]. Furthermore, it
might hard to receive the line-of-sight signals due to the pres-
ence of various obstacles inside the building. Despite various
challenges imposed by the uncertainties in RSS measurements,
RSS from RFID [10] and WiFi [11] are, still a widely exploited
tool for the distance-dependent applications.

Apart from RFID and WiFi, Bluetooth Low Energy (BLE)
beacon has emerged as a promising alternative for IoT-related
development [12]. The popularity of BLE beacon is growing
exponentially with the introduction of Apple’s iBeacon1 in
2013. Besides being a low power and low-cost device [13],
the portability of the beacon which can be associated with any
object anytime allow greater flexibility for interaction design
as compared to the WiFi infrastructure in which their access
point is mostly fixed at a certain location [14]. We chose
BLE beacon over RFID simply because of the accessibility
of Bluetooth signals in most of the off-the-shelf smart devices
(e.g., smartphone, smartwatch, etc.), which enables rapid ap-
plication development on top of the existing platform [15].
However, Bluetooth signals [16] [17], similar any RF signals,

1”iBeacon for Developers”, ”https://developer.apple.com/ibeacon/”
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are subject to severe fluctuation issues as described above. In
other words, distance estimation based on beacon also suffers
severe performance degradation in the indoor environments as
experienced by other RF signals.

In fact, there are a lot of software development kits available
freely for the developers to develop beacon-related applica-
tions. For example, the CoreLocation framework from Apple
includes a distance estimation function which can return the
estimated distance in 1s. Radius Network2, on the other hand,
shares their source code openly with their developers. How-
ever, both approaches fail to return precise distance estimation,
especially when the distance increases, as shown in Fig. 2. In
view of the needs of better distance estimation to cater the
interaction between the things in the IoT ecosystem, this paper
proposes a novel solution to increase the distance estimation
performance at both short- and long-range distances. Our novel
solution encompasses a Kalman filter (KF) implemented on
the edge and an Optimized Support Vector Machine (O-SVM)
regression on the cloud. In contrast to the previous work which
implemented the KF on the server [18], our approach ensures
the real-time performance by transmitting only the filtered
RSS (i.e., the near true RSS value estimated from a list of
noisy RSS measurements) to the cloud to obtain the estimated
distance rather than bombarding the cloud with a bunch of raw
RSS measurements. The proposed solution is abbreviated as
O-SVM-KF and our contributions are summarized as follows:

• Distributing Kalman filter to the edge and distance com-
putation to the cloud to avoid heavy computation burden
on either side, at the same time minimize the data to be
exchanged between the edge and the cloud.

• Using four benchmark functions for performance evalu-
ation. Two benchmark functions are widely adopted by
industries for iOS and Android application development,
respectively. Another two benchmark functions are the
machine learning algorithms.

• Verifying the performance through simulation with real
RSS samples and demonstrating its feasibility through a
real-world implementation over the smartphone.

The rest of the paper is organized as follows. Section II
formulates the problem and describes the proposed solution.
Section III presents the experiment setup for RSS acquisition.
A simulation is conducted to examine the performance of our
proposed solution with the collected RSS samples. Section
IV describes a simple implementation and discusses the per-
formance of our proposed solution in different environments.
Section V concludes the paper.

II. PROPOSED SOLUTION

This section first provides a mathematical formulation re-
lated to RSS-based distance estimation, then follows with a
detailed description of our proposed solution. For consistency,
we used the bold lowercase letter to represent vector and bold
uppercase letter to denote matrix. The related notation used
throughout the paper is summarized in Table I.

2”AltBeacon: The Open and Interoperable Proximity Beacon”,
”http://altbeacon.org/”
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(b) Path Loss Model provided by ALTbeacon (Android)
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Fig. 2. Beacon-based distance estimation using (a) CoreLocation framework
and (b) Path Loss Model by ALTBeacon.

A. Problem Formulation
As shown in Fig. 3, the distance estimation starts will signal

acquisition on the edge. The edge can be of any smart devices
(e.g., smartphone, smart wearable, embedded microcontroller)
as long as they are Bluetooth compatible and possess minimum
computing capabilities [19]. Assume that the list of RSS
measured by the edge over a particular scanning time ts is
represented with a vector r 2 Rn,

In general, it is always desired to estimate a true RSS value
from a list of noisy measurements before proceeding with
distance estimation. In this paper, we adopt KF to smooth
the RSS measurement. KF has been used by many other RSS-
related applications. However, most of them applied the KF
on the server which might incur heavy traffic load to the
server when multiple smart things transmit their collected
RSS samples to the server at the same time. So instead of
transmitting all RSS samples, we apply KF on the edge to
obtain a near true RSS value by filtering the list of noisy
RSS measurements, the processes involved with KF are further
discussed in section II-B. Note that, the noise filtering is not
limited to only KF, other techniques such as running average
can be applied too.

Now, given the received filtered RSS value r̃, the distance
computation over the cloud can be expressed as follows:

dt = f(r̃) (1)

where dt is the distance estimated at time t > ts. f(·) is
an estimated function based on the trained model. The trained
model can be the path loss model or any model trained through
machine learning methods. In this paper, we use support vector
machine (SVM) to train the model, and further optimize the
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Fig. 3. The proposed solution distributes the RSS processing to (a) edge for signal acquisition and Kalman filter and (b) cloud for distance estimation.

TABLE I
RELATED VARIABLES AND THEIR NOTATIONS

Variable’s definition Notation

scanning duration ts
RSS vector r

filtered rss value r̃
sampling interval ⌧0
distance at time t dt
measurement residual z

measurement noise covariance ⌃
measurement noise �
transformation matrix H

error covariance E
Kalman gain K

trained model to achieve better performance. The description
of the SVM training process is provided in section II-C.

B. Kalman Filter on the Edge
This paper adopts KF to obtain a filtered RSS value from

a list of RSS samples collected over time ts. KF is popular
for its light computational requirement which enables us to
implement the filter directly on the edge [20] [21]. Further-
more, KF is capable of inferring the true value of RSS from a
set of noisy and random observation, provided the observation
exhibits a Gaussian distribution [22]. Given the RSS vector r,
KF iterates through each element in r to obtain the filtered
RSS value r̃. In general, the RSS measurements filtering via
KF can be modeled as follows:

r⌧ = r̃⌧H⌧ ± �⌧ (2)

where the transformation matrix H⌧ maps r̃⌧ to the observable
domain, and �⌧ is the measurement noise vector. ⌧ is the time
where the RSS is being sampled. Note that ⌧ < ts and multiple
RSS values might be measured at time ⌧ due to the reflection
from multipath, and r⌧ ✓ r. The objective here is to infer
r̃⌧+⌧0 from r̃⌧ , that is,

r̃⌧+⌧0 = �r̃⌧ ± �⌧ (3)

where � is the transition matrix from ⌧ + ⌧0 and ⌧0 is the
sampling interval.

The noise filtering process continues until r̃ converges
or until reaching the maximum scanning time ts. At each
iteration, KF will keep updating their current estimate and
the error covariance. Here, we list down the three equations
required by KF during the updating phase, the derivation of
these equations can be found in [22].

• Update current estimate: r̃+⌧ = r̃�⌧ +K⌧ (z⌧ �H⌧ r̃�⌧ )
• Update error covariance: E+

⌧ = (I �K⌧H⌧ )E�
⌧

• Kalman gain: K⌧ = E�
⌧ H

T
⌧ (⌃⌧ +H⌧E�

⌧ H
T
⌧ )

�1

Refer to Table I for the definition of the related notations.
Once r̃ is obtained, it will be sent to the cloud for distance

computation. According to to [23], 10 RSS samples per second
are sufficient to obtain a true average RSS value through
running average approach. In fact, with KF, we observed that
r̃ converges after 3 to 4 iterations and before reaching the
maximum scanning duration ts. In other words, we only need
less than 10 RSS samples to obtain the filtered RSS value in
less than 1s. Such fast convergence rate ensures a near real-
time distance estimation for interactive applications.

C. Distance Computation with SVM over the Cloud
The received r̃ is used by the trained SVM model for

distance estimation. The SVM is a common machine learning
technique which uses a kernel function to train the model. In
this paper, a non-linear kernel function - Gaussian kernel is
used, this Gaussian kernel G can be expressed as follows:

G = e�krk2

(4)

The corresponding cost function is:

C(↵) =
1

2

nX

i=1

nX

j=1

(↵i � ↵⇤
i )(↵j � ↵⇤

j )G

+ ✏
nX

i=1

(↵i + ↵⇤
i )�

nX

i=1

(↵i � ↵⇤
i )

subject to
kX

i=1

(↵k � ↵⇤
k) = 0

8n : 0  ↵n  C

8n : 0  ↵⇤
n  C

(5)
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Fig. 4. Experimental setup

where C is a constant that controls the penalty imposed on
the RSS samples that lie outside the margin ✏. The above
optimization formula was derived via the Lagrange dual for-
mulation, which is clearly described in [24]. To solve the above
optimization problem, we performed a series of two-point
optimization via the sequential minimal optimization method
[25], which is provided within the Matlab toolbox.

With the trained coefficient ↵, the optimized SVM (O-
SVM) model can be obtained. The resultant O-SVM model
for distance estimation can be expressed as follows:

dt =
nX

i=1

(↵i � ↵⇤
i )e

�krk2

+ � (6)

Once dt is obtained, the cloud will send the estimated
distance back to the edge, as shown in Fig. 1. Note that the data
size to be exchanged between the server and the edge is just a
few bytes, which mean the time taken for the data exchanging
and distance computation over the cloud is less than 100ms.
Given the processing on the edge is also less than 1s, the
total time taken to obtain the final estimated distance is less
than 1s, which is desirable for most interactive applications.
Section IV verified the real-time performance of our proposed
approach through a practical implementation.

III. EXPERIMENT AND RESULTS

This section describes the setup of the experiment for
signal acquisition, the collected samples are used for latter
simulation. Section III-B lists the benchmark functions used
in the simulation. The simulation is described in section III-C,
and the simulation results are presented in section III-D.

A. Experimental Setup
The experiment was conducted in a 9⇥9m laboratory room

with a beacon placed on the floor, as indicated in Fig. 4.
This beacon is configured to have an advertising interval of
100ms and a transmit power of 0dBm. A customized RSS
measuring app is installed in an iPhone for signals acquisition
at every distance. We measured and collected the RSS samples
from 0 to 8m with 0.2m increment each step. The collected
samples were stored in the phone and exported as .CSV file
for latter simulation. Besides testing the RSS samples with our
proposed solution, we also adopted four popular approaches
as benchmark functions.

B. Benchmark Functions

Among the four adopted approaches for benchmarking, two
are widely used methods for iOS and Android development,
another two is based on the machine learning techniques.

1) CoreLocation Framework (CL): Together with their pro-
prietary iBeacon, Apple provides their developers the Core-
Location framework3 for app development. The CoreLocation
framework provides a method called ”accuracy” to return the
estimated distance in 1s. More specifically, the method applies
the running average over the collected RSS samples in 1s
and return the estimated distance. However, Apple did not
explicitly disclose their method in estimating the distance.

2) Open ALTBeacon Standard (ALTPLM): As opposed to
CoreLocation framework, ALTBeacon provides a set of open
source libraries for Android app development. The path loss
model used for distance estimation is clearly described in their
documentation. The path loss model provided by ALTBeacon
can be expressed as follows:

dt = ↵(r̃/r0)
� + � (7)

where the corresponding coefficients ↵, � and � are provided
explicitly, and can be found in their Github page4. r0 is the
reference RSS value at distance equals to 1m and it is set to
�66dBm as according to their documentation.

3) Linear Regression (LRM): Since the trained model re-
turns the negative distance, which is meaningless in our case
as we only consider scalar distance estimation without the
directional information. Hence, we further modified the trained
model with a unit step function, that is:

dt = (↵r̃ + �)u(t) (8)

where coefficient ↵ is the slope of the linear model and � is
the interception.

4) Non-linear Regression (PLRM): The non-linear regres-
sion uses the same path loss equation described in Eq. (7)
to obtain the regression model. However, for the parameter
d0, instead of using the one provided by ALTBeacon, we
computed the average value of RSS at 1m distance and
substitute the computed value as d0.

C. Simulation

The simulation is conducted with a set of real RSS samples
collected during the experimental phase. We used the Statistics
and Machine Learning Toolbox available in Matlab to train the
LRM, PLRM and also the O-SVM model. The RSS samples
collected at each distance is divided into two portions: 70%
are for training, and 30% for testing. The absolute distance
error is used as the performance measure. This error measure
is a function of distance which can be expressed as

e(d) = kd� dtk (9)

3”CLBeacon”, ”https://developer.apple.com/documentation/corelocation/clbeacon”
4”AltBeacon: The Open and Interoperable Proximity Beacon

specification”, ”https://github.com/AltBeacon/android-beacon-
library/blob/master/src/main/resources/model-distance-calculations.json”



Fig. 5. Histogram is used to capture the absolute distance errors return by
the four benchmark functions.
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Fig. 6. The absolute distance errors returned by the proposed solution.

where d is the actual distance and dt is the estimated distance
at time t. According to Eq. (1), the estimated distance dt is
dependent on the filtered RSS value r̃ and the applied distance
estimation model. The performance achieved by each model
is presented in the next section.

D. Results
The absolute distance errors returned by the four benchmark

functions are illustrated with error histogram, as shown in
Fig. 5. The maximum error class by both CL and ALTPLM
can go up to 700�800cm, in particular, ALTPLM produces a
large number of errors in the 700�800cm error class. On the
other hand, better results are achieved by well-trained models
(e.g., LRM and PLRM), in which the maximum error class
is almost half than CL and ALTPLM. As for our proposed
solution, the maximum error class is at 400�450cm, as shown
in Fig. 6. Furthermore, the absolute distance error produces by
O-SVM-KF is concentrated at the lower error classes.

Fig. 7 summarizes the absolute distance errors in the format
of cumulative distribution function. Obviously, O-SVM-KF
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outperforms the rest with less than 1m distance error 80%
of the time. One possible reason that ALTPLM fails to
produce good performance might be the coefficients provided
is environmental-dependent, which means those coefficients
might able to produce a good distance estimation in their
tested environment but the performance might drop when the
environment changes. Hence, it is valid to assume that the
good performance of PLRM (used similar path loss model as
ALTPLM) is simply because the coefficients were trained in
the same environment. To verify the feasibility of O-SVM-KF
for different environments, we further implement the model
on a smartphone for practical distance testing.

IV. IMPLEMENTATION AND DISCUSSION

The proposed solution was implemented on an iPhone for
practical testing, Fig. 8 shows the App interface and the
testing. Since CoreLocation only return the running averaged
of beacons’ RSS values each second, we used CoreBluetooth
to measure the raw RSS values. With the raw RSS samples,
we applied KF on the phone to obtain a near true RSS value
from a list of noisy measurements. The filtered RSS is then
be sent to the cloud using TCP/IP socket. Upon receiving the
filtered RSS, the cloud retrieves the trained SVM model to
estimate the distance and return to the mobile phone through
the same socket connection.

The implemented App was tested in another laboratory
room with multiple beacons present at the same time. The
estimated distance is obtained almost immediately on the App,
which is indeed desirable for most interactive applications
which are delay-sensitive. Furthermore, since only a filtered
RSS and an estimated distance are exchanged between the
cloud and the edge, the network traffic is greatly reduced as
compared to the previous work proposed by [18]. However,
we also notice estimation deviation from the results obtained
in simulation. One possible reason might be the environmental



Fig. 8. The feasibility of the proposed approach is demonstrated with a
practical implementation.

factor that causes different signal variation in a different room.
In other words, when the signal is blocked by objects [26],
a drop in estimation performance is observed compared to
the environment where the smartphone and beacon are within
the line-of-sight. Despite the estimation variation caused by
different environmental factors, the variation of our proposed
solution is still relatively lower compared to the rest.

V. CONCLUSION
Improved distance estimation is definitely beneficial in

enhancing the smart things’ interaction in the IoT ecosystem.
While RSS-based distance estimation is cost-effective, its
signals suffer a severe fluctuation issue, especially in the
indoor environment. The fluctuation issue affects the reliability
of good estimation. In this paper, we introduced a novel
solution by implementing a Kalman filter on the edge to deal
with the noisy RSS measurements and an optimized SVM
on the cloud for distance estimation. The performance of
proposed solution is verified through both simulation and real-
world implementation. The results indicate the superiority of
our proposed solution with double error reduction in distance
estimation. Furthermore, the real-world implementation proves
the real-time performance of our proposed solution in which
the distance is returned almost immediately. In other words,
the delay is minimal and could not be detected with the naked
human eye. Such a real-time performance is desirable for most
interactive applications which are delay-sensitive.
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