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Abstract—The development of Internet of Things technology
has connected the smart things to the Internet, enabling users
to interact for different applications such as indoor positioning
or location-based notification service. To improve the user ex-
perience, an accurate distance estimation is required to ensure
the interaction can be delivered precisely. For general beacon-
based application, the objects keep moving while they are
interacting with the beacons. Therefore, their mobility needs to be
considered for distance estimation. In this paper, comprehensive
experiments are conducted to study the relationship between
distance estimation accuracy and packet received rate from two
angels, the beacon advertising interval and the object moving
speed. Moreover, an improved distance estimation method using
Kalman filter and support vector regression is proposed, which
has archived at least 40% improvement comparing to current
approaches. The proposed idea is also implemented in real-world
application which archive less than 100µs computation time.

Index Terms—Distance Estimation, Packet Receiving Rate,
Advertising Interval, Moving Speed, BLE Beacon, Internet of
Things

I. INTRODUCTION

In the ecosystem of the Internet of Things (IoT), the
things are able to interact with each other smartly through
different IoT technologies [1] [2]. The smart things can be
any electronic devices, which can detect or broadcast signal
for interaction to provide certain services. Among all of the
services, distance-based IoT application is one of them that
are easiest to experience by the general public [3]. Examples
like location-based service by delivering specific notifications
to users when they are nearby some IoT devices [4] or the
positioning system on users or robots [5]. Bluetooth Low
Energy (BLE) Beacon has attracted lots of development on
beacon related mobile applications since the iBeacon [6] is
announced by Apple.Inc in 2013 due to its compatibility to the
smartphone. BLE beacon is a device that broadcasts its identity
Bluetooth signal periodically. Users’ smartphones can detect
the signal and perform specific actions which are designed by
the service provider. As a battery-powered device, the beacon
is easy to be deployed in different environments comparing to
other technologies like RFID [7] or WiFi [8] which provide
flexibility for the installation process. BLE beacon can be
configured into different advertising interval, which decides
how frequent the beacon broadcasts a packet. Shorter adver-
tising interval can guarantee higher packet receiving rate, but it
would trade off the battery lifetime. Usually, the beacon signal

(a) Cleaning robot (medium speed)

(b) Metro tracking (fast speed)

(c) Customized notification for
mobile users (slow speed)

Fig. 1: Distance-based mobility-related application examples
with different moving speeds.

can cover around 10− 15m depends on the configuration [9].
In some scenario, the users may not be able to locate the
voucher if the promotion message is received by detecting
the beacon. To enhance the user experience and the service
delivery accuracy, the exact distance between the users and
the BLE beacons is necessary to be estimated.

Received Signal Strength (RSS) is widely used for measur-
ing the distance, which can be obtained from the smartphone
directly. The RSS value indicates the strength of the signal
transmitted from the beacon, and it decay when the distance
towards the smartphone increases [10] [11]. RSS signal suffers
from serious fluctuation due to effects like multi-path fading
or shadowing [12] [13] that leads to distance estimation error.
Generally, the path-loss model is used for estimating distance
using RSS value as input for different wireless communication
networks [14]. The path-loss model is based on an ideal
assumption that the RSS would decrease exponentially with
the actual distance under a line-of-sight condition. A path-loss
model with given coefficients is provided in the ALTBeacon
open-source library [15] for beacon related application de-
velopment on the Android platform. However, in reality, the
distribution of RSS is not precisely following the exponential
curve, and the noisy signal will lead to serious estimation error
by using the path-loss model directly.
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To reduce the signal fluctuation, a filtering process is
usually applied for smoothing the signal from the noisy
measurements [16]. Therefore, the packet receiving rate will
directly affect how many samples can be used for filtering.
By configuring the beacon to shorter advertising interval, it
allows the smartphone to have more RSS samples to perform
noise reduction and distance estimation. Besides, user mobility
also affects the packet receiving rate on the receiver side.
Considering the real-world situation, the smartphones or users
are moving with certain speeds while they are interacting with
the beacons. The number of packets received is limited for
estimating distance. Therefore, precise distance is required to
be computed with a few samples but still maintain accuracy.

In this paper, we conducted comprehensive experiments
for analyzing the relationship between the packet receiving
rate and distance estimation accuracy under different beacon
advertising intervals and object moving speeds which covered
almost all the possible BLE beacon applications. Nonetheless,
a novel distance estimation method is proposed for improving
the distance estimation accuracy on moving object. We applied
the Kalman Filter (KF) to deal with the fluctuating RSS signals
on the smartphone. After the filtered RSS value is input to
a trained support vector regression (SVR) model for distance
estimation. The experimental results show the estimation accu-
racy is improved at least 40% compared to the two benchmark
functions and the proposed idea is implemented on a mobile
application to demonstrate its feasibility. The proposed idea is
abbreviated as KF-SVR. The contribution of this paper can be
summarized by the following:
• Comprehensive experiments are conducted in a real-world

setting to study the distance estimation accuracy under
different packet receiving rate;

• An improved distance estimation method is proposed
using KF to filter the fluctuated RSS and SVR for
estimating the distance;

• The proposed idea is implemented in the real application
to demonstrate the feasibility, and the performance is
evaluated to verify its accuracy and real-time response.

The rest of the paper is organized as follows. Section II
formulates the problem and describes the proposed idea.
Section III explains the experimental setup and implementation
details. Section IV presents the experimental results. Section V
concludes the paper.

II. KF-SVR

In this section, the problem between the distance estimation
accuracy and receiving rate is formulated. After that, the
proposed KF-SVR is also described in detail. The notations
used in this paper are shown in Table. I.

A. Problem Formulation

Before any computation process, signal acquisition is re-
quired for detecting the beacon signal to obtain the RSS value.

rI,d0,v = (r1, r2, · · · , rN ) (1)

Kalman Filter
to reduce fluctuation

Support Vector Regression
for distance estimation

𝐫 �̃� 𝑑

Support Vector Regression
for model training

𝑟, 𝑑&

Data Acquisition

Cloud

Smartphone

BLE Beacon

Fig. 2: The proposed KF-SVR. The KF and the trained SVR
model are deployed on the smartphone for distance estimation.

where N is the number of packets detected over the scanning
duration ts. Denote that each RSS vector r are unique with the
corresponding object moving speed v and beacon advertising
interval I . After the RSS vector is obtained, the packet receiv-
ing rate can be calculated and expressed as the following:

ϕ =
N

ts
(2)

which indicate the average number of packets received every
second.

As mentioned, a filtering process is needed for retrieving
a less fluctuated RSS value, which can be any technique like
averaging, min-max. In this paper, we used KF as the filter
to deal with the noisy signal and obtain a filtered RSS r̃ for
distance estimation. Once the filtered RSS value is obtained,
the distance can be estimated by inputting to a distance model
that is expressed as follows:

dt = f(r̃) (3)

where dt is the distance of time t < ts and the model can be
any kind of estimation model such as path-loss or trained non-
linear model. Here, we used a trained support vector regression
model for distance estimation, that will be further discussed
in section II-C.

TABLE I: Related variables and their notations

Symbol Meaning

r RSS vector
r̃ filtered RSS
r RSS
ts scanning duration
N packet number
ϕ packet receiving rate
v object moving speed
I beacon advertising interval
dm moving distance
d0 shortest distance between smartphone and beacon
dt estimated distance at time t
F transition matrix
K Kalman gain
z measurement residual
Σ measurement noise covariance
σ measurement noise
H transformation matrix
E error covariance
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B. Kalman Filter

This paper adopted KF to filter the fluctuated RSS mea-
surements before performing distance estimation. KF is a
lightweight filtering process that could effectively reduce the
noise from the RSS samples by looping the RSS values with
multiple iterations. The KF is deployed on the smartphone
to reduce unnecessary network traffic to an external server,
so the filtered the RSS value can be obtained once the RSS
measurement arrives and input to the distance estimation
model.

The filtering process can be divided into two phases, pre-
diction and update. When the RSS sample is detected by the
smartphome, the KF will first predict a filtered value based
on the previous estimation, which can be expressed as the
following equation,

r̃τ ′ = Fr̃τ + στ (4)

where r̃τ is the filtered RSS value of τ -th samples and στ is
the noise. The objective here is to predict the filtered value
for the next iteration based on the current estimation. After
the prediction phase, the next RSS measurement arrives and
the KF will update the previous predicted value as output for
distance estimation. The equations of the update phase are list
below [17]:

• Update current estimation,

r̃τ = r̃−τ +Kτ (zτ −Hτ r̃
−
τ ) (5)

• Update current error covariance,

E+
τ = (I−KτHτ )E−τ (6)

• Compute the Kalman gain, which decides how much the
current estimation will be affected by previous result,

Kτ = E−τ HT
τ (Στ + HτE−τ HT

τ )−1 (7)

As mentioned, the KF is implemented on the smartphone so
the filtered RSS can be obtained at nearly the same time after
the raw RSS measurement arrived. Once the filtered value is
obtained, the model will compute the distance right away. For
the applications that the objects are moving, such kind of fast
response time definitely could benefit the overall performance.

C. Support Vector Regression model

An estimation model is required for computing the distance
using the filtered RSS from the KF. Instead of using tradi-
tional path-loss model, this paper adopted a machine learning
approach - SVR for distance estimation. The model needs to
be trained using the RSS samples and the actual distance da.
In this paper, the Radial Basis Function (RBF) kernel is used,
which can be stated as the following:

κ = e−γ‖r−r
′‖2 (8)

and the training process is a minimization problem as shown
below,

C(α) = min
α,α∗

1

2
(α− α∗)TQ(α− α∗)

+ ε
l∑
i=1

(αi − α∗i ) +
l∑
i=1

di(αi − α∗i )

subject to eT (α− α∗) = 0

∀l : 0 ≤ αi, α∗i ≤ C, i = 1, . . . , l

where Qij = κ(ri, rj) = φ(ri)
Tφ(rj)

(9)

where C is the regularization term that controls the penalty
of the RSS samples lie outside of the tolerance ε [18]. The
dual problem is solved by a two-point optimization method
provided by scikit [19]. As shown in Fig. 2, the model training
process is performed on the cloud due to its better computation
capability that allows the model to be retrained or improved
quickly. The trained model will be deployed on the smartphone
for distance estimation. The result from the estimation model
can be expressed as follow,

dt =
l∑
i=1

(−αi + α∗i )κ+ b (10)

Thus, the proposed KF-SVR can compute the estimated
distance without any Internet connection which provides the
flexibility for different application scenarios and highly re-
duced the network traffic required comparing to some existing
approaches [20]. Besides the network condition, as the model
is deployed on the smartphone, the estimated distance can be
responded in real-time. Such fast response time is desirable for
applications that users only have limited time to interact with
the beacons. Details on the computation performance will be
discussed later in section III-A

III. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section, the performance of the improved architecture
and experimental setup are discussed.

A. Implementation

The proposed KF-SVR is implemented on a real-world
mobile application for experiment and demonstrating its feasi-
bility. The KF and SVR are both deployed on the smartphone
side, KF is a lightweight filtering method that can be used
to obtain the filtered RSS value right after the raw packet is
detected. Hence, if the KF is deployed on the cloud, every
RSS measurement is required to be sent to the server, which
is not practical as it generates too much network traffic. For the
SVR model, we only implemented the training phase on the
cloud as this process is compute-intensive. The trained model
will be downloaded to the mobile application for estimation.
The experimental data are divided into 70% and 30% for cross-
validation. The average computation time of the proposed KF-
SVR, ALT-PL and NLPL is verified by using thousands of
samples. The KF-SVR requires 28.7µs for KF and 36µs for
SVR, and the general path-loss model used 26.6µs. Therefore,
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Fig. 3: Experiment setup and the screenshot of the mobile
application for experiment.

the calculation time is nearly real-time and the time difference
between the three methods is minimal.

B. Experimental Setup

To investigate the distance estimation accuracy under differ-
ent packet receiving rate ϕ, we have conducted a huge set of
experiments from two angles, the beacon advertising interval
and the object moving speed to study the impact of the packet
receiving rate.

As shown in Fig. 3, the experiment is conducted with a
smartphone moving with speed v for detecting the beacon
signal and the beacon is broadcasting with interval I . A custom
iOS mobile application is developed for data acquisition, and
the user interface shows how many packets are recorded. For
the experiments under high moving speed, we used a camera
to capture the packet detection to make sure the preciseness
of dm, which is shown in Fig. 4. To ensure the accuracy of
the speed in the experiment, the speed v is calculated by
v = dm/∆ts, where the dm is the distance that the object
moved. Considering in real-world deployment, the users may
interact with the beacons in different distances, so we have
conducted the experiments with a set of 3 shortest distance
d0 = {1m, 2m, 5m}. While the actual speed may vary over
each run, the average speed of 10 runs is used as the results.

IV. EXPERIMENTAL RESULT

In this section, we first investigate the distance estimation
accuracy under different settings, then compare the proposed
KF-SVR with two benchmark functions.

A. Advertising Interval

The advertising interval decides how fast the beacon
broadcasts that could affect the number of packets re-

Fig. 4: Video screenshot of experiments with fast speed inside
metro station. The number of received packets is indicated.
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Fig. 5: RSS changes over time when the smartphone is moving
towards and away from the beacon with different I .

ceived by the smartphone. We have conducted the ex-
periment in total 6 different advertising interval I =
{20ms, 50ms, 100ms, 500ms, 1000ms, 2000ms}. For most
of the applications, beacons are configured to broadcast with
an interval between 100ms to 1000ms. We used the path-loss
model from the Alt-Beacon library to compare the distance
estimation accuracy by calculating the absolute distance that
can be expressed as the following:

e(dt) = ||dt − da|| (11)

where dt is the estimated distance in time t and da is the
actual distance.

Fig. 5 shows the RSS measurements with different packet
receiving rates under the same speed of movement, i.e., human
walking (v = 2.5km/h). It is expected that the smartphone
can detect more signal from the 20ms beacon. As mentioned
above, the user is moving towards and then away from the
beacon. Hence, the measured RSS should increases in the first
half while the distance d between the smartphone and beacon
is getting closer. From the result, it is obvious that beacon with
20ms and 100ms are able to tell the users mobility comparing
to 1000ms and 2000ms. The experimental result of d0 = 1m
is shown in Fig. 6a. The estimation accuracy is similar between
I = 20ms−500ms, then it starts to decrease when I is larger
than 1000ms. To further verify the impact from the advertising
interval, the results of d0 = 2m, 5m are also shown in Fig. 6b
and Fig. 6c.

B. Object Moving Speed

The object moving speed v also affect the packet receiving
rate ϕ. According to the result from the previous section IV-A,
any advertising interval shorter than 1000ms can obtain rela-
tively accurate distance. In this section, we used a beacon with
advertising interval I = 100ms to conduct the experiments
with various moving speed to ensure we can obtain enough
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Fig. 6: Distance estimation accuracy with different packet received rate ϕ with different advertising intervals I .
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Fig. 7: Distance estimation accuracy with different packet
received rate ϕ with different object moving speed v.

TABLE II: Moving speed and corresponding packet receiving
rate

Moving Speed v Packet Receiving Rate ϕ

2.5 km/h 7.79
2.9 km/h 7.16
3.8 km/h 5.74
7.0 km/h 1.93
23.6 km/h 1.21
45.4 km/h 0.96

RSS samples but still maintain the accuracy. The speed test
covers mobility of human walking, remote-controlled vehicle
and public transportation for simulating in a total of 6 speeds in
a real-world setup. The moving speed v and its corresponding
packet receiving rate ϕ is shown in Table. II.

From the result shown in Fig. 7, the distance estimation
accuracy decreases with the packet receiving rate. Thus, more
RSS samples can improve the estimation accuracy in overall.
When the object moves faster than 45km/h, the average
number of packet received at the smartphone is less than one,
where the result shows that more than 50% of time the absolute
error is larger than 4m.

C. Benchmark Functions

From the previous two sets of experiments, it is found
that the distance estimation accuracy is related to the packet
received rate. In this paper, we proposed a novel method using

KF and SVR for distance estimation that aims to archive
improved distance estimation accuracy on moving objects. To
evaluate the performance of proposed KF-SVR, the following
two benchmark functions (ALT-PL and NLPL) are used for
comparison,

1) Alt-Beacon open-sourced library (ALT-PL): The Alt-
Beacon library provides a distance estimation model based
on the path-loss model with provided coefficient, the general
form of the model is provided below,

dt = α

(
r

r0

)β
+ γ (12)

where r0 is the reference RSS measured in 1m. The cor-
responding value or α, β and γ are given in the library’s
document.

2) Non-linear Path-loss model (NLPL): Beside the open-
sourced model, the same set of data is used to train a non-linear
model which is the same as Eq. 12 using the curve-fitting
technique. Instead of using the suggested value from Alt-
Beacon, we use the coefficient obtained by our dataset using
curve-fitting technique to construct a more accurate model as
a benchmark.

D. Experimental Result

The proposed KF-SVR and the two benchmark functions
are used to evaluate the accuracy with the same dataset. The
50th and 90th percentile of the CDF are used to compare the
methods with the tested I , which are shown in Table. III.
Comparing to ALT-PL and NLPL, the KF-SVR has in average
more than 60% and 20% improvement on error reduction.

To further evaluate the performance of KF-SVR, the model
is also tested under different object moving speed v. Besides
the speed of human walking, we investigate the distance
estimation performance for five more speed settings. The
absolute error results of three estimation methods are shown in
Table. IV. Comparing to ALT-PL, the KF-SVR has obtained
more than 40% improvement on error reduction, and 20%
comparing to NLPL.

V. CONCLUSION

Precise distance estimation is definitely essential for BLE
beacon-based application. The service can be delivered ac-
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TABLE III: Absolute distance error with different I at 50th

and 90th percentile.

ϕ I Percentile KF-SVR
(Proposed) NLPL ALT-PL

25.9 20ms
90th 1.92m 2.01m 4.07m
50th 0.67m 0.98m 1.82m

12.58 50ms
90th 1.88m 1.91m 4.29m
50th 0.94m 1.93m 2.03m

11.73 100ms
90th 1.99m 1.95m 4.13m
50th 0.72m 1.13m 2.11m

2.6 500ms
90th 2.18m 1.93m 4.08m
50th 0.74m 1.21m 2.00m

1.32 1000ms
90th 1.59m 1.90m 4.33m
50th 0.74m 1.52m 3.67m

0.48 2000ms
90th 1.54m 1.65m 4.33m
50th 0.88m 1.26m 2.60m

TABLE IV: Absolute distance error with different v at 50th

and 90th percentile.

ϕ v Percentile KF-SVR
(Proposed) NLPL ALT-PL

7.79 2.5km/h
90th 1.01m 1.55m 3.68m
50th 0.41m 0.63m 1.58m

7.16 2.9km/h
90th 1.88m 1.91m 4.29m
50th 0.94m 1.93m 2.03m

5.74 3.8km/h
90th 1.18m 1.70m 4.02m
50th 0.46m 0.63m 1.89m

1.93 7.0km/h
90th 5.82m 5.82m 6.50m
50th 2.01m 2.41m 2.25m

1.21 23.6km/h
90th 5.03m 4.96m 5.85m
50th 1.70m 2.09m 2.44m

0.96 45.4km/h
90th 8.81m 7.62m 8.38m
50th 2.38m 8.81m 4.13m

curately when an improved distance estimation can be ap-
plied for knowing how far the users are from the beacon.
For most of the real-world applications, the user mobility
leads to limited packet receiving rate for distance estimation.
In this paper, comprehensive experiments are conducted to
study the distance estimation accuracy with different packet
receiving rate. An improved distance estimation method is
also proposed and evaluated by multiple real-world settings
that have archived more than 40% error reduction comparing
to existing development framework. The proposed KF-SVR is
also implemented for demonstrating the feasibility. Also, the
response time is less than 100µs that is desirable for many
applications, especially when the objects move quickly.
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