
1

An E�icient Computation Framework for Connection

Discovery using Shared Images

MING CHEUNG, Hong Kong University of Science and Technology

XIAOPENG LI, Hong Kong University of Science and Technology

JAMES SHE, Hong Kong University of Science and Technology

With the advent and popularity of the social network, social graphs become essential to improve services and

information relevance to users for many social media applications to predict follower/followee relationship,

community membership, etc. However, the social graphs could be hidden by users due to privacy concerns, or

kept by social media. Recently, connections discovered from user shared images using machine generated

labels are proved to be more accessible alternatives to social graphs. But real-time discovery is di�cult due

to high complexity, and many applications are not possible. This paper proposes an e�cient computation

framework for connection discovery using user shared images, which is suitable for any image processing

and computer vision techniques for connection discovery on the �y. The framework includes the architecture

of online computation to facilitate real time processing, o�ine computation for a complete processing, and

online/o�ine communication. The proposed framework is implemented to demonstrate its e�ectiveness by

speeding up connection discovery through user-shared images. By studying 300K+ user shared images from

two popular social networks, it is proven that the proposed computation framework reduces 90% of runtime

with a comparable accurate with existing frameworks.

CCS Concepts: • Human-centered computing → Collaborative and social computing systems and

tools; • Information systems → Multimedia information systems; • Social and professional topics →

User characteristics;

Additional Key Words and Phrases: Social networks, connection discovery, Bag-of-Features Tagging, user

shared images, computation framework

ACM Reference format:

Ming Cheung, Xiaopeng Li, and James She. 2017. An E�cient Computation Framework for Connection

Discovery using Shared Images. ACM Trans. Multimedia Comput. Commun. Appl. 1, 1, Article 1 (January 2017),

21 pages.

https://doi.org/https://doi.org/10.1145/3115951

1 INTRODUCTION

Social media becomes prevalent among people in our daily live nowadays. People can discover their

like-minded friends on Facebook, Twitter, Weibo, etc. These social media sites help users �nd their

potential relationships, such as online friendships, follower/followee relationship and community

memberships, based on their social graphs (SGs), a form of connection, and interactions with others

This work is supported by HKUST-NIE Social Media Lab.

Author’s addresses: M. Cheung, X. Li and J. She, Department of Electronic and Computer Engineering, the Hong Kong

University of Science and Technology, Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

1551-6857/2017/1-ART1 $15.00

https://doi.org/https://doi.org/10.1145/3115951

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:2 M. Cheung et al.

Fig. 1. An example of user shared images and user connections.

[2, 16, 17, 29, 42]. With all these social information of users, tons of interesting and personalized

applications have been developed to make life convenient in real world [10, 31, 35, 39, 43]. Obviously,

all these applications can have a better understanding of users with more user participation under

this big data era with su�cient computing resources. However, SGs could be hidden by users due

to their privacy concern, or kept by social media, which make it hard for companies to taste the

bene�ts of social networks.

Without the access to SGs, it is still possible to discover another form of connections between

users. Intuitively, similar users may have similar user behaviors and interactions on the sites.

Thus using these interactions and other side information (e.g., location) can model the strength of

connections between users [14, 22, 41]. Some media applies a general tie strength model for their

own applications [13]. In [32], the authors learn the user interests from the shared content. In [46],

the authors use the mean of the feature vectors, along with other features such as comments to

calculate the similarity of users. However, the features applied in those works could be unavailable

to other social media, which limits the use of those approaches. Recently, annotating machine

generated labels using Bag-of-features Tagging (BoFT) on user shared images for connection

discovery is proven to be a more accessible alternative to social graph [5]. Machine generated labels

are assigned to those images, and the connections among users can be calculated based on the

similarity of the occurrence of di�erent labels. Fig. 1 shows some examples of user shared images

and user connections, where user A, B and C share a lot of car images while user D shares a lot

of �ower images and few car images. Inferring from their shared images, it is more likely that

user A, B and C have relatively stronger connections. With connections between users available,

relationships between users can be predicted and many applications such as follower/followee

recommendation and gender identi�cation are possible using the discovered connections [6].

The generation of machine generated labels is not limited by bag-of-features, but also many other

techniques such as GIST and color-based techniques that convert images to a feature vector[7].

The images are then assigned with a machine generated label by clustering all the user shared

images and assigning each image a cluster label. There are two major challenges in order to build

a practical system with this method for connection discovery. The �rst is scalability problem.

The amounts of users in social network sites are millions or more. Shared images by those users

are enormous, billions or more. In order to assign machine generated labels to shared images,

clustering has to be conducted over all images. The process could be extremely slow even with

cloud-assisted computing. Without e�cient computation and delicate design, it is impractical to

build an online connection discovery system with the BoFT technique. The second problem is

that shared images are continuously generated. For example, in March 2013, Flickr had a total

of 87 million registered members and more than 3.5 million new images uploaded daily. With

more and more newly generated images, the concepts of image clusters might also drift. One way

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:3

to incorporate the newly generated images is to rebuild the model with all images. Rebuilding

(re-clustering), however, is typically an expensive task and should not be done too frequently. How

to incorporate the fast generated images for connection discovery while making the computation

feasible for real time requirement is a big challenge.

In order to resolve above challenges, this paper presents a fast and scalable connection discovery

framework using machine generated labels, and demonstrates the e�ciency of the framework

for follower/followee recommendation using BoFT. With the purpose of instant response, the

framework manages the parts with intensive computation in o�ine and discovers connections

by combining the results of the o�ine process and streaming image input. In online connection

discovery, the framework can e�ciently assign suitable labels for the images posted by user i . Then

the similarity between other users and user i will be recomputed based on the labels they have as

an instantly updated result. With the connections between users available, many applications such

as gender prediction, collaborative recommendation, user-targeted advertising and user search

can generate instant results to users. According to [6], it has been proved that 2 users with a

high similarity are more likely to be follower/followee than 2 users with a low similarity[6]. Thus

through evaluating the performance in the application of follower/followee recommendation, the

validity of discovered connections can be demonstrated. The most similar J users are selected for

user i as the recommended follower/followee relationships. In summary, this paper makes the

following contributions:

• Proposed a novel computation framework for connection discovery using user shared images

with an online/o�ine architecture that achieves instant response, in which the framework

can be applied to any computer vision/image processing techniques;

• Implemented the proposed framework and demonstrates its e�ectiveness by scaling and

speeding up connection discovery through user-shared images with cloud;

• Devised an e�cient online algorithm to incrementally update the parameters of the analytics

with streaming input of user shared images for connection discovery; and

• Conducted several experiments with 300K+ user shared images from two popular social

networks to evaluate the performance of the proposed framework, and proved that the

proposed computation framework signi�cantly improves the computation speed, reducing

90% of runtime with comparable precision.

The rest of this paper is organized as follows: Section II reviews the related work in research on

some e�cient or even real-time systems in social networks. Section III introduces how connections

can be discovered using user shared images, and indicates the limitations of it. Section IV describes

proposed computation framework for connection discovery and how such a general framework is

designed and implemented. Section V reports the evaluation results of the comparative analysis

with other frameworks on two social network datasets, using BoFT. Section VI discusses a parameter

setting in experiments, a comparison of a related work and future works. This section further

raises some problems of current framework and other alternatives that can probably improve the

framework. Section VII concludes the paper.

2 RELATED WORKS

Recommendations, such as items [24], rating [45] and multimedia content [26, 33] have long been

researched with the use of social graphs. However, due to user privacy concern, or policy of social

media, the social graphs are only available for exclusive parties. Even the social graph is publicly

accessible, social connectivity of its users is very low that is not usable for many applications

[26]. Recently, the use of visual appearance has been proven to be promising as an alternative for

recommendation [5, 40, 44, 46]. However, the high computation load of analyzing images reduces

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 M. Cheung et al.

the usefulness of the analytics.

Substantial research e�orts have focused on real-time processing framework in social networks.

Since complex computations are targeted on a large amount of data in real time, the right types of

infrastructures are needed to be explored. Thus a real-time system with the desired expressiveness

and scalability is needed. [12] developed a social information discovery system for social network

analysis in a very quick response time by accelerating the extraction, transformation and loading

(ETL) process. [38] proposed a real-time website security protection mechanism based on the

concept of proxy to prevent an attack from some suspicious web pages. [37] proposed a highly-

automated framework for real-time tag recommendation. The framework is divided into two parts:

o�ine computation and online recommendation. A mixture model for document classi�cation

is built based on the distribution of documents and words during the o�ine stage. In the online

recommendation stage, a document is classi�ed according to prede�ned clusters acquired in the

o�ine stage. Online/o�ine framework is also applicable to other applications, such as location

recommendation [20]. On the other hand, [34] proposed a scalable and real-time method for tag

recommendation. This method created a tag-LDA model and implemented a distributed training

tool for the model using Hadoop MapReduce framework such that the recommendation can be done

in real-time by only using model parameters. However, their method cannot handle continuously

generated data from the web in that the model does not update periodically.

In terms of online friendship and follower/follower relationship recommendation, there are

also plenty of research groups have contributed a lot to achieve those recommendations in a

very fast way. [42] designed a general connection recommendation framework to recommend

potential online friendship and follower/follower relationship in real online social network. The

recommendation is achieved in real time by monitoring users’ new adding connection to know

when to recompute the recommendations. [30] considered the real-time physical location proximity

and historical check-in behavior similarity in the location-based mobile social network to facilitate

users to make suitable friends from the surrounding people in a real time. Both of the work

help users to �nd their potential friends in real-time. Those works are signi�cant but there is

no technique to speed up their algorithms for a large scale data. Understanding the community

structure and dynamics of social networks is vital for the design of related applications and devising

business strategies. [25] empirically analyzed a scalable, e�cient and accurate community detection

algorithm and observed how it can be potentially applied online in large-scale and real-time

social networks. Google designed a scalable online collaborative �ltering algorithm to build online

personalized recommendation engine on a large web property like Google News [11]. Their real time

recommendation system consists of three components: an o�ine component that is responsible for

periodically clustering users; a set of online servers; and data tables for mapping user ids and news

ids. In the system architectures of Net�ix [3], there are also three main computational component:

online computation, o�ine computation, and nearline computation. Online computation can

respond to requests in real-time while o�ine computation trains a model in a batch manner with

relaxed timing requirement. Unlike the data tables in Google news recommendation system [11],

nearline computation is an intermediate compromise between online and o�ine mode in which it

can do online-like computations, but do not require them to be served in real-time.

This paper designed a framework for Bag-of-Features Tagging approach by combining online

and o�ine computations so as to make a faster connection discovery compared to the original

framework using the most accessible data on social media, i.e. user shared images. To the best of

our knowledge, this is the �rst work that explicitly proposes an e�cient computation framework

applied on Bag-of-Features Tagging approach for connection discovery in social networks.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:5

Fig. 2. An overview of connection discovery [5]

3 CONNECTION DISCOVERY USING MACHINE GENERATED LABELS

This section introduces how to generate machine generated labels to user shared images, as well as

how to recommend follower/followee based on those discovered connections. Although di�erent

computer vision approaches are proven to be able to generate machine generated labels, this

paper applies BoFT to demonstrate the proposed framework. The section �rst introduces how

machine generated labels can be assigned to images, followed by connection discovery withmachine

generated labels and the limitations of it.

3.1 Assigning Machine Generated Labels

The �rst step of machine generated labels is image encoding, where images are encoded as feature

vectors. One of the possible ways is using a Scale-Invariant Feature Transform (SIFT)-based approach

[28]. The generation of machine generated labels is not limited by SIFT, other techniques such

as GIST and color-based techniques can also encode images into feature vector[7]. In computer

vision/image processing tasks such as object recognition, classi�cation is based on the feature

vector. But in connection discovery, the goal is to assign a machine generated label to an image,

which is not necessary to be the objects on the image. The labels are assigned clustering, which

groups images with similar feature vectors. Each cluster obtained in this operation corresponds to

similar objects to which a machine-generated label is assigned. After obtaining the cluster in step 4

of Fig. 2, the images in any clusters are assigned with the same machine generated label to re�ect

that they are visually similar and belong to the same group. It is an unsupervised operation and no

assumption is made or information on the image is known.

3.2 Connection Discovery with Machine Generated Labels

The label distribution, which re�ects the visual features of user shared images, is the key in the

content recommendation. In connection discovery, it is assumed that no user input is needed and

the label distribution is the occurrence of each label as in step 5 of Fig. 2. For example, the label

distribution of user i is represented by a vector Li .

Li = (li,1, ...li,k , ...li,K) (1)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 M. Cheung et al.

Each element li,k in Li is the number occurrence of label k in the shared images of user i . When

the distribution is obtained, the next step is to calculate the similarity between users based on their

distributions. The similarity between two users is calculated by the cosine similarity:

Si, j = S (Li ,Lj) =
Li · Lj

| |Li | | · | |Lj | |
(2)

where Li and Lj are the distributions of user i and j, respectively. Two users who share similar

images have a higher Si, j ., and are more likely to be follower/followee[6]. Finally, a similarity graph

based on label distributions is generated as in Fig. 2 and the most similar J users will be chosen for

each user i as the recommendation.

3.3 Limitations

As shown in step 4 of Fig. 2, connection discovery requires many computational and storage

resources because all the data need to be stored in memory and many iterations are involved in the

clustering process. When the dataset is very large, such as billions of images, the whole process will

last several hours, or longer, even without the step of preprocessing the images. Besides the number

of images, similarity calculation is also computationally intensive when there are millions of users

in social networks. A stand-alone machine de�nitely cannot e�ciently process billions of images

and millions of users in real-world social networks. The computational parts should have a relaxed

time requirement so that the framework can be accelerated. Therefore, a more e�cient computation

framework is proposed in this paper to help to solve the above problems for the approach.

4 PROPOSED COMPUTATION FRAMEWORK FOR CONNECTION DISCOVERY

This section describes how assigning machine generated labels shown in Fig. 2 can be improved

into a much more e�cient fashion. Fig. 3 shows the proposed framework on cloud. The proposed

framework is not only available for connection discovery, but also for other applications like item

recommendation, user-target advertising, etc (Fig. 3(a)). There are two main computations in the

framework to facilitate e�cient processing: an online computation that is required to respond to

users instantly and an o�ine computation that is responsible for periodically update the information

that does not require strict timing requirement. How online and o�ine communication is very

essential to connection discovery and this section will elaborate the detail inside.

4.1 Online Computation

In the implementation, the online computation contains one online servers to process users’ requests

while it is also �exible to have many online server to support many user requests. The online

computation comprises of four main parts: assigning machine generated labels for the incoming

images, updating the label distributions of each user, recalculating the similarity and sorting the

list of discovered connections based on the similarity. To further elaborate why such a framework

(Fig. 3) is designed in this paper, two types of requests from users are de�ned here:

(1) user logins and automatically receives recommendations from the discovered connections.

(2) user shares several images and the connections are discovered within an instant time interval.

In terms of the �rst type, only a sorted list of discovered connections for the user who raised

the request needs to maintain in o�ine to present the discovered connections. The sorted lists for

all users would be updated periodically in o�ine with the incoming images in online as shown in

step 5 in Fig. 3. In other words, the o�ine computation will synchronize the sorted list for each

user with the one in online whenever there is an updated list appears. The framework can simply

extract the discovered connections from the list and send back to users as the response. For the

latter case, the images shared by users �rst go through the feature extraction process (step 1 and

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:7

Fig. 3. The proposed computation framework of connection discovery with user shared images. (a): The

online computation which contains 5 steps to e�iciently discover connections with instant input. (b): The

o�line computation periodically runs the clustering, generates the sorted lists for online

2 of Fig. 2) such that visual words can be obtained to represent the images. A visual word of an

image is a numeric vector, which means each image is denoted by a numeric vector before sending

to the proposed framework. When the feature vector of an image is sent to the framework, the

online computation will go through the four main parts to discover the connections for the users

who posted the image.

4.1.1 Machine Generated Label Assignment. The �rst part is to assign a machine generated label

to the incoming image. In order to incorporate the newly generated images into consideration

for connection discovery, the user pro�les and similarities have to be updated by re-estimating

the parameters. Re-building the model whenever new data comes in, however, is computationally

ine�cient and is not an option for the system to be practical. Thus, an incrementally update method

is proposed here. Since each image in o�ine already has a corresponding label by clustering, the

new assignment can be made e�ciently based on those labels. Thus this is a general classi�cation

problem for the new image, many classi�cation algorithms [9, 23, 27] can be �tted into this part to

classify the image. This paper divides this part into two sub-elements as step 1 and 2 in Fig. 3(a).

The �rst part quickly locates some images which are similar to the incoming one and the second

one will assign a machine generated label to the new image based on these the labels of these

similar images.

(1) Search Similar Images: When an image vector is input to the framework, this element searches

visually similar images to the input. The simplest and most naive solution to this problem is a linear

search, which is to calculate the distance from the query image vector to every other image vectors

with a label, keeping track of the near neighbors within a distance threshold. However, linear

search has a running time of O (KN) where N is the number of images and K is the dimension of

image vector. This paper applies the classical method, Locality Sensitive Hashing (LSH). LSH is

more e�cient to locate similar images with high dimension as shown in step 1 of Fig. 3(a). The LSH

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 M. Cheung et al.

technique was introduced by Indyk and Motwani [18] to e�ciently solve the near-neighbor search

problem and many applications have used it for neighbor searching [4, 8, 15]. Given a query point,

LSH can help �nd the points in a large dataset that are close to the query point. LSH guarantees

a high probability that the neighbor is nearest for any query point. The key idea is to hash the

data points using several hash functions so as to ensure that, for each function, the probability

of collision is much higher for objects which are close to each other than for those which are far

apart. Then, one can determine near neighbors by hashing the query point and retrieving elements

stored in buckets containing that point.

LSH exhibits the locality-aware property which supports similarity aggregation. The images

with similar features can be hashed into the same buckets with a higher probability. The hash

function is de�ned by a random projection, h~x,b (~v) =
⌊
~x ·~v+b
w

⌋
. ~x is a vector with components that

are selected at random from a Gaussian distribution. The number of hash functions Nh and the

number of buckets Nb are the parameters while constructing the LSH. Within each set of Nh dot

products, success is achieved if the query and the nearest neighbor are in the same bin in all Nh

dot products. To reduce the impact of an "unlucky" quantization in any one projection, there are

Nb independent projections and the neighbors are pooled from all of these projections. This is

motivated by the fact that a true near neighbor will be unlikely to be unlucky in all the projections.

By increasing Nb we can �nd the true nearest neighbor with arbitrarily high probability. Therefore

with LSH, the framework can identify several images which are similar to the input.

(2) Best Label Selection: Selecting the best label for the incoming image among all the neighbors,

the simplest one is to assign the label of the closest image in terms of distance. However, this will

inaccurate if the point distribution is a skewed distribution. This can be solved by giving weights

to images or labels so that the label of the incoming image will be a function of the neighbors

and the correlate weights. This framework applies the majority voting method as shown in step

2 of Fig. 3(a). The percentage among all neighbors that are acquired in LSH is de�ned as β . For

instance, β = 50% means that the nearest 50% neighbors are selected from all neighbors acquired

in LSH. A detailed discussion can be found in Section 6. A voting process is applied to assign the

most occurred label in the neighbor est of images as the label of the incoming image. Suppose the

neighbor set generated from LSH and selected using β is N, which means there are ‖N‖1 neighbors

in the voting process. The occurrences of each label i in N is li , so the following equation is used to

select the best label among the neighbor set:

label = argmax
i

li where i ∈ N. (3)

Through this process, the machine generated label is obtained and then the framework will go

through to update the similarity. As described above, not only majority voting can be applied

to select a machine generated label, many other more accurate approaches can be used. Other

approaches can also work applicable to the proposed framework.

4.1.2 Profile Regeneration and Similarity Update. As described in Section 3.2, the distribution

of user i is de�ned by a vector Li . When user i posts a new image, the image will be assigned a

machine generated label and the distribution of user i needs to be updated. This step is referred to

the step 3 in Fig. 3(a).

Users who have the corresponding images will acquire the corresponding machine generated

labels as shown in Fig. 4. Thus the corresponding user vector Li will be updated by adding a number

of labels and normalization in the following way:

Li = L′i + ∆Li , (4)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:9

Fig. 4. Profile update with an incoming label

where ∆Li is the incremental label vector, indicating the newly added labels. When the user vector

is obtained, similarities between Li and all other user vectors need to be updated as well. If the

similarity is purely recalculating without considering previous information then the complexity

will still maintain O (N (u)K), where N (u) is the number of users and K is the dimension of the user

pro�le, the distribution of labels. For example, user i , who has a user pro�le, L′i , has posted an

image and the assignment is label k . So the number of label k of user i has, li,k , is li,k = l ′
i,k
+ 1.

By storing the L2-norm of each distribution and previous similarity, the updated cosine similarity,

S (Li ,Lj), can be re-calculated as follows:

S (Li ,Lj) =
Li · Lj

‖Li ‖‖Lj ‖

=

li,1lj,1 + · · · + (l ′
i,k
+ 1)lj,k + · · · + li,dlj,K

√

l2i,1 + · · · + (li,k + 1)2 + · · · + l
2
i,K
‖Lj ‖

=

li,1lj,1 + · · · + l
′
i,k
lj,k + · · · + li,K lj,K + lj,k

√

l2i,1 + · · · + l
2
i,k
+ · · · + l2

i,K
+ 2li,k + 1‖Lj ‖

=

L′i · Lj + lj,k
√

‖l ′i ‖
2
+ 2li,k + 1‖Lj ‖

=

L
′
i

Lj

 S (L
′

i ,Lj) + lj,k

L
∗
i

Lj

where L
∗
i

2
=
L
′
i

2
+ 2li,k + 1

(5)

In Eq. 5, the computation can be done in a constant time by directly using the norm of label

distribution and previous cosine similarity. li,K and lj,K are the number of occurrence of label k for

user i and j, respectively. Then the complexity of calculating the updated similarity with all other

users reduces to only O (N (u)) and no need care about how many dimensions the distribution has.

4.1.3 E�icient Connection Discovery. To discover connections for the user who has just posted

the images, the framework will then generate the most similar J users from all N (u) users based on

their similarities. Heap search whose complexity is onlyO (N (u)loдJ) is used to e�ciently generate

top-J connections. This, however, can be signi�cantly improved in a more e�cient way by having

some elegant pruning for connection discovery. Because the o�ine has already generated the

sorted lists, users that are impossible to be in top-J after updating the similarities can be located

and excluded in the calculation. The framework �rst calculates the similarity between the user who

triggered the request and the J users who are listed as top-J connections only. The pruning process

happens while calculating the similarity. For example, in Fig. 5 example,M = 3 and the list is for

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 M. Cheung et al.

Fig. 5. Pruning in connection discovery for user A withM = 3 discovered connections. (LC and LD are not

necessary for sorting)

user A with pro�le LA. While calculating the similarity between LA and other users, the framework

starts calculating from the previously sorted list and maintains a minimum similarity value, 0.2 in

this example, during calculating the �rstM similarities. Continuing to calculate others, LD in this

example, the framework will compare the updated similarity with the minimum value obtained. If

that similarity is even smaller than the minimum value, then it’s no need to sort the corresponding

user LD because its ranking must be overM . As all similarities are recomputed and the topM users

are regenerated in o�ine computation, the same list of users would not be recommended forever.

To formulate the pruning process, Ci is used to denote the current topM discovered connections

for user Li while C
′

i represents the previous one. If the following inequality is satis�ed for user Lp ,

it is not necessary to do the heap search for Lp :

S (Li ,Lp) < min
q

S (Li ,Lq) ∀q ∈ C
′

i ,p < C
′

i (6)

The time complexity of the pruning strategy isO (N (u)). Through this pruning process, the e�ciency

of heap search to generate Ci will obviously be improved because the number of users needed in

heap search decreases and the time complexity for heap search is about O (MloдJ). It will be very

helpful for real-world applications. In summary, the procedure of an e�cient connection discovery

framework for online can be described in Algorithm 1.

ALGORITHM 1: Online Connection Discovery

Input: The image feature vector ~x shared by user i

Output: Recommendations ~Ci for user i

∆Li ← ~0 ;

label(~x) ← voting(LSH(~x) ;

∆Li ← ∆Li+label(~x) ;

Li ← L
′

i + ∆Li ;

for Lj ∈ N
(u) do

S (Li ,Lj) ← updateSim(S (L
′

i ,Lj)) ;

end

~Ci = topJConnections(Lj) ;

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:11

4.2 O�line Computation

As shown in Fig. 3(b), computationally intensive tasks are performed periodically in the o�ine cloud

platform, Spark1 is used in this paper. As o�ine computation can have a relaxed time requirement

in the whole framework, the LSH is constructed in o�ine and used by online connection discovery.

Moreover, the o�ine computation will perform the clustering on the cloud platform so that the

online computation can utilize the clustering result immediately. Besides the computationally

intensive parts, o�ine computation will also update the similarity and the sorted list time by time

such that a sorted list is always available even there is no image input. This section will present the

detail of the o�ine implementation on Spark.

4.2.1 Clustering on Cloud Platform. This section presents a distributed framework of the cluster-

ing algorithm, k-means, on Spark cluster. The Spark cluster contains one master node to coordinate

the jobs and several slave nodes to execute the jobs submitted from the client. Each slave node

can have multiple workers to run part of the job. The input is a large �le that contains lots of

image vectors generated from feature extraction which refers to step 1 of Fig. 2. Each numeric

vector represents an image. Originally the large �le is split and stored in the Hadoop Distributed

File System (HDFS) and then Spark will read it as a distributed object in a cluster. The k centroids

are randomly generated from all the image vectors and it becomes a variable saved in memory.

In Spark, this variable is broadcasted to all the slave nodes so that each slave can help calculated

the distance between centroids and all the points. The �rst process is a map transformation in

Spark as shown in step 1 in Fig. 3(b). This map transformation in each worker is to calculate the

Euclidean distance between each vector and all the centroids, and assign the vector to the cluster

whose centroid has the minimum distance with the vector. Once the assignment for all vectors are

done, the reduce step as in step 2 of Fig. 3(b) can be performed to calculate the new centroid for

each cluster by combining the points within the same cluster. As Spark allows developers to store

the results in memory, it is very useful for iterative algorithms like k-means in this paper. Thus

the clustering will iterate until the centroids converge. Once the clustering result is obtained, the

o�ine computation will send the result to online and continue distribution calculation as shown in

step 3 of Fig. 3(b).

4.2.2 Generating the Sorted Lists. As described above, the o�ine processing will be periodically

updated. Besides clustering in o�ine, similarity calculation and the sorted list (step 4 and 5 of Fig.

3(b)) for each user will also be updated once the clustering is done, such that the whole o�ine

processing is updated periodically. Once the clustering is done, the machine generated labels

will be assigned to the users who have the corresponding images. With these machine generated

labels, the framework can easily construct the user distributions in a vector format by counting the

occurrences of each label.

From Section 3.2, the similarity between two users Li and Lj is updated periodically based the

cosine similarity in eq. 2. The sorted list for each user L can then be generated descending sorting

according to the similarity between L and all other users. In this way, the framework can drag the

discovered connections out at any time and no need to wait images come in.

4.3 Communications between Online and O�line

This section describes how the online and o�ine computations are connected and how they facilitate

an e�cient connection discovery. As shown in Fig. 3, communications between online and o�ine

happen in two places, when the image features are received and when the clustering results are

generated. A synchronization process from o�ine to online will also occur when the sorted lists in

1Spark: https://spark.apache.org/.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 M. Cheung et al.

o�ine are updated. When the image feature vectors are obtained, the framework distributes the

features to o�ine and the o�ine computation will save them to bu�er for processing. Once the

bu�er is full or the preset time is up, the o�ine computation will combine all the old images and

the new images together to process from step 1 to step 5 of Fig. 3(b).

While the o�ine computation is generating the sorted lists for all users, the clustering results

will be sent to the online (step 3 of Fig. 3(b)) for voting once step 2 of Fig. 3(b) is done and the

o�ine computation will still continue distribution calculation without pausing. Once the online

computation has received the clustering results, it stores the results into memory in the online

server and replaces the previous clustering results. The clustering results or in other words the

labeling results of images are used in voting the label for the incoming images (step 2 of Fig.

3(a)). Because each image has its corresponding label in o�ine, the LSH select the neighbors for

voting and the neighbors also have the corresponding labels from the clustering results. Once the

o�ine computation is done, the sorted lists will also synchronize for all users in online so that the

framework is also available for the �rst kind of request describe in Section 4.1.

5 PERFORMANCE EVALUATION

With the discovered connections, relationships between users can be predicted and many appli-

cations such as gender prediction, collaborative recommendation, user-targeted advertising and

user search can be applied on. In this section, the discovered connections are evaluated with the

application of follower/followee recommendation on social networks. This section �rst presents

the setup for the experiments and then introduces the two social network datasets used in the

experiments. Some methods are implemented as the baseline to compare the performance of the

proposed framework by four metrics de�ned in this section. Finally, the evaluation results are

presented to shows the e�ciency of the proposed framework.

5.1 Experimental Setup

There are two datasets with a large amount of user-shared images collected from Skyrock and

Twitter involved in the experiments. Skyrock and Twitter are general social networks which al-

low users to post text and images, and even other emerging forms such as videos. The Skyrock

dataset comprises 176,547 images uploaded by 722 unique users, where all the users are randomly

selected from a single query page of an image keyword search and their corresponding images and

follower/followee relationships are scraped. There are 2,439,058 follower/followee relationships in

total, including 7348 existing follower/followee relationships within these 722 users. The second

dataset, Twitter, consists of 150,696 images uploaded by 462 unique users, scraped with the same

method as Skyrock dataset. The total follower/followee relationships involved are 14,487,045, includ-

ing 1364 existing follower/followee relationships within these 462 users. The statistic distribution

in terms of the number of friends and the number of shared images for both datasets are shown

in Fig. 6 and Fig. 7. All users from Skyrock and Twitter are selected randomly using the o�cial

API, in which the network densities are only 1.41% and 0.65% on Skyrock and Twitter, respectively.

The datasets with 300K+ images from two social networks are large enough to show such behavior

for evaluation of connections discovered and its application in follower/followee recommendation.

Other possible results such as gender identi�cation using similar dataset such as Flickr are shown

in [6]. The results can be well extended when the analytics are applied in real-world platforms

where billions of users are involved.

The experiments are performed in the Spark cluster, which consists of 9 VMs, one as the master

node and another 8 VMs as slave nodes. Each node has two virtual CPU running at 2.4GHz, with a

8 GB RAM, a 20GB hard disk and a Gigabit network interface card. The cluster was built on top of

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:13

Fig. 6. Statistic distribution of Skyrock dataset. (a): number of friends. (b): the number of shared images

Fig. 7. Statistic distribution of Twi�er dataset. (a): number of friends. (b): the number of shared images

Hadoop and the dataset is stored in Hadoop Distributed File System (HDFS). In order to evaluate

the framework, there are some existing frameworks that for comparisons:

• Stand-alone BoFT (SABoFT): The original BoFT connection discovery framework shown in

Fig. 2 is implemented on a stand-alone machine to be compared with the proposed framework.

SABoFT runs the complete process on a single machine and did not distribute any parts of

computations in BoFT.

• Cloud-Assisted BoFT (CABoFT): The cloud-assisted BoFT framework, proposed by [21],

is also implemented for comparisons. The Cloud-assisted BoFT framework distributed the

clustering process via Hadoop MapReduce. It further improved the scalability by distributing

the distributions calculation and similarity calculation by parallel computing for connection

discovery.

In SABoFT, when more images are uploaded, the runtime increases linearly as there are more

images to cluster completely with limited computing resources such as CPU. In CABoFT, Although

plenty of computing resources are available, the runtime is limited by the communication and

those operations that can not be computed in parallel. These limitations increase the runtime.

The proposed BoFT computation framework handles the computational parts (i.e. clustering, label

distribution calculation, similarity calculation and top-M connection discovery) periodically in

o�ine, which can make the framework persist the static information that can be sent back to

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 M. Cheung et al.

Fig. 8. Processing Time on two social networks. (a): Processing Time on Skyrock. (b): Processing Time on

Twi�er

users. When users trigger a request by posting images, the framework then quickly respond to a

user through the online connection discovery. As shown in Fig. 3, the o�ine computation uses

hash functions to achieve random projections, so there are some parameter settings in LSH before

running the experiments. The implementation is using the following settings of parameters:

• Nh : the number of hash functions in LSH. Within each set of Nh dot products, the projection

achieves success if the query and the nearest neighbors are in the same bin in all Nh dot

products. Nh is empirically set to 10 [36] in this experiment.

• Nb : the number of buckets. By increasing the number of random projections, LSH can �nd the

true nearest neighbor with arbitrarily high probability. Nt is set to 100 [36] in this experiment.

• β : the percentage number of all neighbors that to be chosen in majority voting (i.e. the

number of neighbors that is selected from LSH). Here it is set to 50% and the experiment will

measure the in�uence on the precision in discussions. Again, the neighbors selected are the

top 50% nearest neighbors from all neighbors extracted in LSH.

5.2 Evaluation Metrics and Results

The experiments in this paper use three metrics to evaluate the performance of the proposed

framework. The �rst one is the processing time, tp , which is measured from the time an image

vector is received to the time that recommendation is made as shown in Fig. 3. The second one

is the precision for evaluating how accurate the recommendation are. Precision is de�ned as the

number of truly predicted connections (Tp) divided by the total number of predicted connections

(Tp + Fp):

Precision =
Tp

Tp + Fp
, (7)

where Fp is the number of false predicted connections. There is another variable which is the

number of neighbors in LSH in the proposed online connection discovery, as shown in Fig. 3.

LSH will help pick all the similar neighbors for the voting process. But whether a large number

of neighbors or a small number of neighbors would a�ect the performance. The last metric is to

measure the processing time per image tpi =
tp
n
. As this paper claims that the framework towards

an e�cient connection discovery, the framework is expected to have a fast and stable processing

time for each image input.

5.2.1 Processing Time. To process the Skyrock dataset, the proposed framework, SABoFT and

CABoFT �rst trained initial 76,547 images in o�ine and then test the framework with 100,000

images. For Twitter, the framework also trained initial 50,696 images in o�ine �rst.On top of the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:15

Fig. 9. Processing time per image on two social networks. (a): Processing time per image on Skyrock. (b):

Processing time per image on Twi�er

Table 1. Comparison of Processing Time on Skyrock

Time(s) Label Generation Pro�le Update Similarity Update

SABoFT 102.534 0.258 3.880

CABoFT 80.402 0.324 3.763

Proposed 9.440 0.011 5.405

initial 76,547 and 50,696 images, the experiment examined the time as a function of the number

of testing images from 10,000 to 100,000 with the increase of 10,000. Fig. 8 shows the processing

time of online computation of BoFT in all the three frameworks introduced above. Fig. 8(a) and Fig.

8(b) show the processing time on Skyrock and Twitter dataset, respectively. It is observed that the

proposed framework outperforms the stand-alone and cloud-assisted BoFT with increasing volume

of images for both Skyrock and Twitter due to the low complexity of the online computation.

The processing time of all the three frameworks increases with more images. The processing

time of SABoFT increases exponentially with more images in both social networks because of

the low scalability of the stand-alone platform. In terms of the CABoFT, the processing time is

originally very large since the volume of data is small and then the overhead in the cloud will

dominate most of the time. However, as shown in Fig. 8 in Skyrock dataset, the time increased

slowly when there are large amount of data and outperformed SABoFT after the number of images

is over 70,000. The proposed framework reduces 90.0% and 88.37% as much time as SABoFT and

CABoFT on average in terms of the processing time on all images, respectively. In Table 1 and 2,

the comparison of the processing time of individual computation units for the three approaches

are made. The major computation units include label generation, pro�le update and similarity

update. The experiments are conducted for testing images of 100,000. As it can be seen that, for both

Skyrock and Twitter datasets, the largest bene�t of the proposed framework is in label generation.

The proposed framework generates labels for incoming images through LSH and voting scheme

without the necessity of clustering from scratch, which reduces a signi�cant amount of computation

time compared to SABoFT and CABoFT. For the pro�le update, the proposed framework also speed

up a lot due to incrementally update. Although it might seem that the similarity update costs more

time for the proposed framework, it’s actually because the similarity update is performed in a

streaming manner where the recommendation can be made directly after an incoming image is

processed. Whereas for SABoFT and CABoFT, the recommendation is made after all 100,000 images

are processed. Therefore, the similarity update actually speeds up for the proposed framework.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 M. Cheung et al.

Table 2. Comparison of Processing Time on Twi�er

Time(s) Label Generation Pro�le Update Similarity Update

SABoFT 50.176 0.393 2.141

CABoFT 80.56 0.337 1.918

Proposed 9.069 0.009 3.909

Fig. 10. Precision on two social networks. (a): Precision on Skyrock. (b): Precision on Twi�er

5.2.2 Processing Time Per Image. As described in the beginning, tpi is the processing time divided

by the number of images. Fig. 9 shows the average processing time per image of three frameworks.

The average processing time measures the time from when an image feature vector enters into the

framework to when connections are found. The following description in this section will simply

use the average processing time to denote processing time per image. On both social networks, the

average processing time of SABoFT is shorter than the one of CABoFT in the beginning because the

overhead in cloud dominates most of the time in CABoFT. With more data comes in, the average

processing time drops down quickly and becomes more stable because processing data comes to the

major part who consumes the time and it costs not too much time to process an image. With the

high scalability of the cloud, the average processing time becomes stable. As shown in Fig. 9, the

average processing time of CABoFT is shorter than SABoFT after the number of images surpasses

70,000, which also indicates the higher scalability of CABoFT than SABoFT. Because the waiting

time for each image is increasing with more data in a stand-alone platform, the average processing

time per image will also increase. Although the average processing time of CABoFT always higher

than SABoFT in the Twitter dataset as shown in Fig. 9, the trend is still obvious that the time of

CABoFT drops and becomes stable and the time of SABoFT increases with more and more data.

Because of the low scalability of SABoFT, the average processing time should �nally longer than

the time of CABoFT.

With more and more streaming input, the time to process each image is almost equal as shown

in Fig. 9 (a) and Fig. 9 (b). The average processing time per image of the proposed framework is

always shorter than SABoFT and CABoFT, and those two methods have unstable performance

when the number of images is di�erent. For time-sensitive applications, it is very important to

rapidly learn factors for new items (e.g. event updates, tweets, images) so that the applications

can have a satis�ed user experience and attract more users to join [1, 19]. With the stable and low

processing time per image, the framework can easily scale and handle a large amount of data in an

e�cient fashion.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:17

5.2.3 Precision. This experiment evaluates the precision of recommended relationships com-

pared with ground truth on both Skyrock and Twitter dataset. Same as the previous experiments,

the proposed framework �rst trained 76,547 and 50,696 images in advance and then test the remain-

ing 100,000 images for comparisons by increasing the images by 10000. If the number of inserted

images now is 30,000, then SABoFT and CABoFT will cluster these 30,000 images in addition to

the initial 76,547 and 50,696 images, with the total of 106,547 and 80,696 images, and recommend

relationships for the newly 10,000 images which is just posted by users, as in Fig. 10. Thus the size

of test data at each time is 10,000 images posted by users. The experiments imitate the real-world

applications, in which the o�ine computation of the proposed framework will update periodically.

Basically, there is not much di�erence in the performance between SABoFT and CABoFT because

they both applied the same clustering technique, k-means. The only di�erences are CABoFT make

it scalable on cloud and the initial and random centers picked in the k-means algorithm. So they

have very similar performance and the precision increases as more and more data came in to make

the clustering more reliable. With the increasing number of posted images, the advantages of the

proposed framework show up. It achieves 96.8% and 91.2% of the precision in Skyrock and Twitter,

respectively. The proposed framework can have a comparable precision with stand-alone and

cloud-assisted BoFT frameworks while it can have a much faster speed than them, while achieving

a similar precision. The performance achieved in the two datasets can be extended when applying

to real-world platforms.

It is proven that the proposed framework can achieve a comparable precision with the original

BoFT while saving much more time than the stand-alone and cloud-assisted mode of BoFT. The

online connection discovery can be done much faster since it is not necessary to wait for the

clustering result, which can be updated in o�ine. Furthermore, the e�ciency of processing time

would not be in�uenced by whatever clustering the framework used because the online computa-

tion only utilizes the result of the o�ine clustering. Thus the o�ine clustering can be improved

without considering whether the processing time will be a�ected or not. By using this architecture,

developers can separately improve the precision on online and o�ine computations, which makes

it more independent.

6 DISCUSSIONS

This section discusses the in�uence of the number of neighbors on the proposed framework and

the trade-o� value between the precision and the processing time, and then raises some directions

that worth for future works.

6.1 Influence of the number of neighbors

As described in Section 4.1.1, LSH will help �nd out all the points which are near to the input.

Because of the concern on the e�ciency, the framework will select β nearest neighbors to avoid

the �uctuation in the processing time. However, vary numbers of neighbors generated from LSH

can have di�erent impact on the framework. This experiment measures the in�uence of di�erent

percentages of neighbors extracted from LSH on precision and processing time, as shown in Fig.

11. The percentage β starts from 10% to 100% and the precision reached the peak at β = 50% in

Skyrock and Twitter. From Fig. 11 (a) and Fig. 11 (b), the number of neighbors does not have a

monotone-increasing e�ect on precision. With the �xed value of Nh and Nb , the range of extracted

neighbors is also �xed. The results as shown in Fig. 11 (a) and Fig. 11 (b) indicate the range is still

large because extracting all neighbors does not lead to a high precision but only a percentage of all

neighbors. Based on this reason, either a very small number of neighbors or a very large number

of neighbors in this experiment cannot lead to a very good result. Intuitively, it is not reliable to

judge which label that the incoming image belongs to when the number of neighbors is too small.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 M. Cheung et al.

Fig. 11. Precision on two social networks. (a): Influence of di�erent percentage of neighbors on Skyrock. (b):

Influence of di�erent percentage of neighbors on Twi�er.

Fig. 12. Results of follower/followee recommendation on: (a) Skyrock, (b) Twi�er.

In a similar way, it is also not reliable to decide the label when the number of neighbors is too

large because a wide range can lead to the wrong classi�cation. However, the di�erent dataset will

have a di�erent optimal β value for connection discovery in terms of the precision. Thus it is still

challenging to calculate an optimal β value for the whole process.

6.2 Comparing another framework

Although the focus of this paper is to demonstrate how a real-time response is possible using

machine generated labels for connection discovery, it is also interesting to compare other ap-

proaches using user shared images for follower/followee recommendation. The approach in [46] is

implemented, in which the user pro�le of users is not the distribution of the occurrence of machine

generated labels, but the mean vector of feature vectors obtained from images. Fig. 12 shows the

comparisons on two datasets with the number of recommendations to each user is 5 to 10. It is

observed that the proposed approach is 20% better than the approach in [46].

6.3 Possible Research Directions

There are directions to improve the framework in terms of the precision. The �rst one is the burn-in

period, where users share only a few images that the results is not reliable. One of the options is

to predict the connections based on conventional approaches, such as using user online pro�le.

The second one is the quality of the clustering results, a better clustering results, such a the best K ,

can enhance connection discovery. In online connection discovery, new clusters may be needed

when an image comes. It is worth investigating whether forming new clusters in online can help to

further improve the precision. The last issue is about the number of online servers in the framework,

one in this experiments. In real-world applications, there can be many client servers to receive the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:19

images from users, and increasing the number of servers can help to speed up the processing. It

is interesting to investigate how the number of servers a�ects the processing, as well as how to

design an e�ective algorithm for the processing on multiple machines.

7 CONCLUSION

In this paper, an e�cient computation framework is proposed for connection discovery to speed

up the BoFT analytics using user shared images. The framework is designed separately by online

and o�ine computations. The computationally intensive parts are handled in o�ine on the cloud

platform and the online computation utilizes the results from o�ine to make connection discovery

in an e�cient fashion. The online connection discovery then uses voting to select the results

from o�ine. The performance of the connection discovery is evaluated in the application of

follower/followee recommendation with 300K+ user-shared images on two social networks. The

experiments showed the proposed framework has a much shorter processing time compared to the

previous works of BoFT frameworks on two real social network datasets. The proposed framework

reduces on average 90.0% as much time as stand-alone BoFT and 88.7% of the time on cloud-assisted

BoFT in terms of the processing time on all images, with 90% as accurate as other frameworks.

The experiments further proved the e�ectiveness of the proposed framework with more stable and

much shorter processing time per image, which makes it satisfy the requirement of real time in

real-world applications.

ACKNOWLEDGMENTS

This work is supported by HKUST-NIE Social Media Lab., HKUST. The authors would like to thanks

ZHANMING JIE for improving this paper.

REFERENCES

[1] Deepak Agarwal, Bee-Chung Chen, and Pradheep Elango. 2010. Fast online learning through o�ine initialization

for time-sensitive recommendation. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 703–712.

[2] Vinti Agarwal and KK Bharadwaj. 2013. A collaborative �ltering framework for friends recommendation in social

networks based on interaction intensity and adaptive user similarity. Social Network Analysis and Mining 3, 3 (2013),

359–379.

[3] Xavie Amatriain and Justin Basilico. 2013. System architectures for personalization and recommendation. the Net�ix

Techblog: http://techblog. net�ix. com/2013/03/system-architectures-for. html (2013).

[4] Jeremy Buhler. 2001. E�cient large-scale sequence comparison by locality-sensitive hashing. Bioinformatics 17, 5

(2001), 419–428.

[5] Ming Cheung and James She. 2014. Bag-of-Features Tagging Approach for a Better Recommendation with Social Big

Data. In IMMM 2014, The Fourth International Conference on Advances in Information Mining and Management. 83–88.

[6] Ming Cheung, James She, and Zhanming Jie. 2015. Connection Discovery using Big Data of User Shared Images in

Social Media. IEEE Transactions on Multimedia (2015). Accepted.

[7] Ming Cheung, James She, and Li Xiaopeng. 2015. Non-user Generated Annotation on User Shared Images for

Connection Discovery. In Proceedings of The IEEE International Conference on Cyber, Physical and Social Computing

(CPSCom 15).

[8] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani, Je�rey D Ullman, and

Cheng Yang. 2001. Finding interesting associations without support pruning. Knowledge and Data Engineering, IEEE

Transactions on 13, 1 (2001), 64–78.

[9] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning 20, 3 (1995), 273–297.

[10] Weijia Dai, Ginger Z Jin, Jungmin Lee, and Michael Luca. 2012. Optimal aggregation of consumer ratings: an application

to yelp. com. Technical Report. National Bureau of Economic Research.

[11] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007. Google news personalization: scalable

online collaborative �ltering. In Proceedings of the 16th international conference on World Wide Web. ACM, 271–280.

[12] Claudia Diamantini, Domenico Potena, Alessandro Sabelli, and Samuele Scattolini. 2014. An integrated system for

social information discovery. In International Conference on Collaboration Technologies and Systems (CTS), 2014. IEEE,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 M. Cheung et al.

353–360.

[13] Eric Gilbert. 2012. Predicting tie strength in a new medium. In Proceedings of the ACM 2012 conference on Computer

Supported Cooperative Work. ACM, 1047–1056.

[14] Eric Gilbert and Karrie Karahalios. 2009. Predicting tie strength with social media. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 211–220.

[15] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in high dimensions via hashing. In VLDB,

Vol. 99. 518–529.

[16] Liang Gou, Fang You, Jun Guo, Luqi Wu, and Xiaolong Luke Zhang. 2011. Sfviz: interest-based friends exploration

and recommendation in social networks. In Proceedings of the 2011 Visual Information Communication-International

Symposium. ACM, 15.

[17] William H Hsu, Andrew L King, Martin SR Paradesi, Tejaswi Pydimarri, and Tim Weninger. 2006. Collaborative and

Structural Recommendation of Friends using Weblog-based Social Network Analysis.. In AAAI Spring Symposium:

Computational Approaches to Analyzing Weblogs. 55–60.

[18] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards removing the curse of dimensionality.

In Proceedings of the thirtieth annual ACM symposium on Theory of computing. ACM, 604–613.

[19] Junzhong Ji, Zhiqiang Sha, Chunnian Liu, and Ning Zhong. 2003. Online recommendation based on customer shopping

model in e-commerce. In Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on. IEEE,

68–74.

[20] Shuhui Jiang, Xueming Qian, Jialie Shen, Yun Fu, and Tao Mei. 2015. Author topic model-based collaborative �ltering

for personalized POI recommendations. IEEE transactions on multimedia 17, 6 (2015), 907–918.

[21] Zhanming Jie, Ming Cheung, and James She. 2015. A Cloud-assisted Framework for Bag-of-Features Tagging in Social

Networks. In IEEE 4th Symposium on Network Cloud Computing and Applications. Accepted.

[22] Jason J Jones, Jaime E Settle, Robert M Bond, Christopher J Fariss, Cameron Marlow, and James H Fowler. 2013.

Inferring tie strength from online directed behavior. PloS one 8, 1 (2013), e52168.

[23] I Kanellopoulos and GG Wilkinson. 1997. Strategies and best practice for neural network image classi�cation.

International Journal of Remote Sensing 18, 4 (1997), 711–725.

[24] Xiaojiang Lei, Xueming Qian, and Guoshuai Zhao. 2016. Rating prediction based on social sentiment from textual

reviews. IEEE Transactions on Multimedia 18, 9 (2016), 1910–1921.

[25] Ian XY Leung, Pan Hui, Pietro Lio, and Jon Crowcroft. 2009. Towards real-time community detection in large networks.

Physical Review E 79, 6 (2009), 066107.

[26] Zhenyu Li, Jiali Lin, Kave Salamatian, and Gaogang Xie. 2013. Social connections in user-generated content video

systems: Analysis and recommendation. IEEE Transactions on network and service management 10, 1 (2013), 70–83.

[27] Andy Liaw and Matthew Wiener. 2002. Classi�cation and regression by randomForest. R news 2, 3 (2002), 18–22.

[28] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints. International journal of computer

vision 60, 2 (2004), 91–110.

[29] Xueming Qian, He Feng, Guoshuai Zhao, and Tao Mei. 2014. Personalized Recommendation Combining User Interest

and Social Circle. IEEE Transactions on Knowledge and Data Engineering 26, 7 (2014), 1763–1777.

[30] Xiuquan Qiao, Jianchong Su, Jinsong Zhang, Wangli Xu, BudanWu, Sida Xue, and Junliang Chen. 2014. Recommending

friends instantly in location-based mobile social networks. Communications, China 11, 2 (2014), 109–127.

[31] Lara Quijano-Sanchez, Juan A Recio-Garcia, and Belen Diaz-Agudo. 2011. Happymovie: A facebook application for

recommending movies to groups. In Tools with Arti�cial Intelligence (ICTAI), 2011 23rd IEEE International Conference on.

IEEE, 239–244.

[32] Jitao Sang and Changsheng Xu. 2012. Right buddy makes the di�erence: An early exploration of social relation analysis

in multimedia applications. In Proceedings of the 20th ACM international conference on Multimedia. ACM, 19–28.

[33] Jitao Sang and Changsheng Xu. 2013. Social in�uence analysis and application on multimedia sharing websites. ACM

Transactions on Multimedia Computing, Communications, and Applications (TOMM) 9, 1s (2013), 53.

[34] Xiance Si and Maosong Sun. 2009. Tag-LDA for scalable real-time tag recommendation. Journal of Computational

Information Systems 6, 1 (2009), 23–31.

[35] Meredith M Skeels and Jonathan Grudin. 2009. When social networks cross boundaries: a case study of workplace use

of facebook and linkedin. In Proceedings of the ACM 2009 international conference on Supporting group work. ACM,

95–104.

[36] Malcolm Slaney and Michael Casey. 2008. Locality-sensitive hashing for �nding nearest neighbors [lecture notes].

Signal Processing Magazine, IEEE 25, 2 (2008), 128–131.

[37] Yang Song, Ziming Zhuang, Huajing Li, Qiankun Zhao, Jia Li, Wang-Chien Lee, and C Lee Giles. 2008. Real-time

automatic tag recommendation. In Proceedings of the 31st annual international ACM SIGIR conference on Research and

development in information retrieval. ACM, 515–522.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

An E�icient Computation Framework for Connection Discovery using Shared Images 1:21

[38] DT Tsai, Allen Y Chang, S Chung, and You Sheng Li. 2010. A Proxybased Real-time Protection Mechanism for Social

Networking Sites. Proc. ICCST (2010).

[39] Stanley Wasserman. 1994. Social network analysis: Methods and applications. Vol. 8. Cambridge university press.

[40] Zhipeng Wu, Shuqiang Jiang, and Qingming Huang. 2009. Friend recommendation according to appearances on

photos. In Proceedings of the 17th ACM international conference on Multimedia. ACM, 987–988.

[41] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling relationship strength in online social networks.

In Proceedings of the 19th international conference on World wide web. ACM, 981–990.

[42] Xing Xie. 2010. Potential friend recommendation in online social network. In Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom).

IEEE, 831–835.

[43] Xiwang Yang, Yang Guo, and Yong Liu. 2013. Bayesian-inference-based recommendation in online social networks.

IEEE Transactions on Parallel and Distributed Systems 24, 4 (2013), 642–651.

[44] Ting Yao, Chong-Wah Ngo, and Tao Mei. 2011. Context-based friend suggestion in online photo-sharing community.

In Proceedings of the 19th ACM international conference on Multimedia. ACM, 945–948.

[45] Guoshuai Zhao, Xueming Qian, and Xing Xie. 2016. User-service rating prediction by exploring social users’ rating

behaviors. IEEE Transactions on Multimedia 18, 3 (2016), 496–506.

[46] Jinfeng Zhuang, Tao Mei, Steven CH Hoi, Xian-Sheng Hua, and Shipeng Li. 2011. Modeling social strength in social

media community via kernel-based learning. In Proceedings of the 19th ACM international conference on Multimedia.

ACM, 113–122.

Received February 2017; revised May 2017; accepted June 2017

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2017.

