
39

A Distributed Streaming Framework for Connection

Discovery Using Shared Videos

XIAOPENG LI, The Hong Kong University of Science and Technology

MING CHEUNG, The Hong Kong University of Science and Technology

JAMES SHE, The Hong Kong University of Science and Technology

With the advances in mobile devices and the popularity of social networks, users can share multimedia content

anytime, anywhere. One of the most important types of emerging content is video, which is commonly

shared on platforms such as Instagram and Facebook. User connections, which indicate whether two users

are follower/followee or have the same interests, are essential to improve services and information relevant

to users for many social media applications. But they are normally hidden due to users’ privacy concerns,

or are kept con�dential by social media sites. Using user-shared content is an alternative way to discover

user connections. This paper proposes to use user shared videos for connection discovery with Bag of

Feature Tagging (BoFT) method and proposes a distributed streaming computation framework to facilitate

the analytics. Exploiting the uniqueness of shared videos, the proposed framework is divided into Streaming

processing, Online and O�ine Computation. With experiments using a dataset from Twitter, it has been

proved that the proposed method using user-shared videos for connection discovery is feasible. And the

proposed computation framework signi�cantly accelerates the analytics, reducing the processing time to

only 32% for follower/followee recommendation. It has also been proved that comparable performance can be

achieved with only partial data for each video and leads to more e�cient computation.

CCS Concepts: • Human-centered computing → Social recommendation; Social media; • Networks

→ Cloud computing; • Computing methodologies→ Vector / streaming algorithms;

Additional Key Words and Phrases: Social networks, connection discovery, Bag-of-Features Tagging, user

shared videos, computation framework, streaming

ACM Reference format:

Xiaopeng Li, Ming Cheung, and James She. 2017. ADistributed Streaming Framework for Connection Discovery

Using Shared Videos. ACM Trans. Multimedia Comput. Commun. Appl. 9, 4, Article 39 (May 2017), 23 pages.

https://doi.org/0000001.0000001

1 INTRODUCTION

Social media has become prevalent among people and revolutionized peopole’s interactions in our

daily life. Social media platforms, like Facebook and Weibo, help people connect to each other,

share content and exchange experiences/comments. With social network analysis, these social

media platforms can discover user connections, such as online friendships, follower/followee rela-

tionships and community memberships. Many link-based methods for connection discovery has

This work is supported by HKUST-NIE Social Media Lab.

Author’s addresses: X. Li, M. Cheung and J. She, Department of Electronic and Computer Engineering, the Hong Kong

University of Science and Technology, Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

1551-6857/2017/5-ART39 $15.00

https://doi.org/0000001.0000001

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:2 X. Li et al.

Fig. 1. User-shared videos in: (a) Twi�er, (b) Instagram

been proposed in the literature using social graphs (SGs), which indicates users’ connections and

interactions with others [2, 7, 8, 17, 23]. By using those connections, personalized applications

such as content recommendation and viral marketing can be developed. However, the limitation

of link-based methods is that it su�ers from sparsity and cold-start problems. When the SGs are

very sparse or users are newly added and not connected to anyone, link-based methods are not

applicable. Further, SGs can be hidden by users due to privacy concern, or kept con�dential by

social media platforms, which make it hard for outside companies to obtain the bene�ts of social

networks. Recently, it has been proved that even without access to SGs, discovering connections

is still possible by analyzing user-shared multimedia content [4, 13]. The content-based methods

resolves the challenges of link-based methods, and the content has been extended beyond text to

include images, audio and video.

In [3], annotating labels using Bag-of-features Tagging (BoFT) on user-shared images for connec-

tion discovery has been proved to be a more accessible alternative to social graphs. In [13], Gaussian

Relational Topic Model has been proposed to solve the problem of connection discovery with shared

images using machine learning. Beyond images, videos are now becoming a more and more popular

type of user-shared multimedia contents. Fig. 1 (a) and Fig. 1 (b) show examples of videos shared on

Twitter and Instagram. And for some video-based social media sites, such as Youtube and Vimeo,

videos are the only sharing medium. Like user-shared images, utilizing user-shared videos could

provide more insight into users’ interests and possible connections. However, there is a signi�cant

di�erence between shared images and shared videos. Videos contain much richer information than

images. Multi-modal information, i.e. visual, audio and textual, is embeded into videos and the

visual information can be regarded as a sequence of images. Understanding and extracting the

content of videos is much more challenging than doing so for images. Therefore, it is important

to come up with an analytic method to mine users’ interests and perform connection discovery

from user-shared videos. Further, new challenges come into being since videos are generally much

larger than images and more complex to process. Intensive computation is required, and the long

processing time limits the practicability of the video-based connection discovery. Therefore, both

the video analytics for connection discovery and the acceleration for the analytics are important in

order for such systems to be practical.

To resolve above challanges, this paper presents a fast and scalable method for connection

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:3

discovery using user-shared videos, and proposes a distributed streaming computation framework

for the analytics. First, in order to extract visual information for connection discovery, user-shared

videos are regarded as a sequence of keyframes and visual content is represented using BoFT

approach. Users’ characteristics are described using the videos they share and the connections

between users are discovered afterwards. With the discovered connections, many applications such

as collaborative recommendation, user-targeted advertising and user search can be possible. To the

best of our knowledge, this is the �rst work that explicitly proposes to use user-shared videos for

connection discovery. As processing user-shared videos is computationally intensive and poor on

scalability, in order to serve the proposed connection discovery framework using user-shared videos,

a computation framework is proposed. The proposed framework is divided into Streaming Process,

Online Computation and O�ine Computation. In Streaming Process, the relatively long uploading

time of videos is exploited by dividing videos into multiple chunks, and transmitting and processing

the chunks with di�erent streaming servers to achieve fast response. Furthermore, the framework

manages the computationally intensive parts in O�ine Computation, while keeping the users’

characteristics and connections incrementally updated in Online Computation to ensure real-time

processing. We also �nd that videos have unique characteristics that may be exploited for faster

processing, such as redundancy among sequences. With delicate design, even less computation is

required. In summary, this paper makes the following contributions:

• Proposes a BoFT method for connection discovery with user-shared videos and proves its

feasiblility through experiments.

• Proposes an e�cient distributed streaming computation framework combining Streaming

Process, Online Computation and O�ine Computation to accelerate the analytics and achieve

real-time processing of user-shared videos for connection discovery.

• Conducts several experiments with 35,000+ videos and about 500 users from Twitter, and

proves that the proposed framework signi�cantly acclerates the analytics compared with

previous frameworks, taking only 30%∼50% as much time as previous works. Experiments

also show that a comparable performance can be achieved with only partial data for each

video and it further reduces the processing time.

The rest of this paper is organized as follows: Section II reviews the related research work on

methods for modeling social media and e�cient or even real-time systems in social networks.

Section III introduces a BoFT approach for video and indicates the limitations of BoFT. Section

IV describes the proposed computation framework for BoFT and how such a general framework

is designed and implemented. Section V reports the results of comparative analysis with other

frameworks on the Twitter datasets. Section VI discusses potential problems of current framework

and gives alternatives that may improve the it. Section VII concludes the paper.

2 RELATED WORKS

As discussed above, it is proven that even without access to SGs, discovering connections is still

possible by analyzing user-shared content. Using user interactions and other side information

(e.g. location) it is possible to model the strength of connections between users [6, 11, 22]. Some

researchers apply a general tie strength model for their own applications [5]. In [18], the authors

learn the users’ interests from shared content. In [25], the authors use the mean of the feature

vectors, along with other features such as comments, to calculate the similarity between users.

However, the features applied in these works could be unavailable to other social media platforms,

which limits the use of these approaches. In [3], annotating labels using BoFT on user-shared

images for connection discovery is proven to be a more accessible alternative to social graphs.

Labels are assigned to those images, and the connections among users can be calculated based

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:4 X. Li et al.

on the similarity of the occurrence of di�erent labels. Follower/followee recommendation and

gender identi�cation are possible using these discovered connections. It has been proved that two

users with a high similarity are more likely to be follower/followee than two users with a low

similarity[4]. In [13], Gaussian Relational Topic Model has been proposed to solve the problem

of connection discovery with shared images using machine learning. Yet when the user-shared

content extends to videos, few previous works have attempted to utilize this type of multimedia

content information for connection discovery.

The large amount of social media users generate a large amount of multimedia content in social

media sites. For better user experience, instant response is generally desired in those systems.

Substantial research e�orts have focused on real-time computation frameworks in social networks

and following are several of them. [19] proposed a distributed framework using Hadoop MapReduce

for tag-LDA model training, and the tag recommendation is done in real-time by utilizing the

model parameters obtained in the training process. However, since the parameters do not update

periodically, the framework does not utilize newly generated data. Therefore the precision could

be degraded when applied to social media, where data is generated continuously. [20] proposed a

real-time framework for document classi�cation. The framework consists of online computation

and o�ine computation, where the o�ine computation does the classi�cation using a clustering

method and the online computation uses the cluster result to classify a document. [10] proposed a

cloud assisted framework for bag-of-feature tagging with user-shared images, in which the compu-

tationally intensive part is accelerated by using the cloud. However, in general both documents

and images are much smaller than videos, and processing videos generally demands a higher order

of magnitude of computation. In real-time applications where instant response is required, it is

challenging to design an e�cient framework to process videos.

There are some unique characteristics of videos, compared with other forms of multimedia

content that could be utilized to speed up their computation. The on-demand video streaming

technique is a mature technology in which video fragments are fetched by a client from a server

in small units called chunks [12]. [24] proposed a streaming data processing pipeline for content-

based video similarity search. Their system parallelizes the feature extraction of a certain video at

keyframe level and further aggregates the keyframe features to get the feature representation of

videos. However, they did not consider that the uploading and keyframe extraction also costs a lot

of time.

This paper investigates the feasibility of using user-shared videos for connection discovery and a

framework for Bag-of-Features Tagging approach is designed by combining streaming processing,

online and o�ine computation so as to make connection discovery faster compared to other

frameworks on social media. To the best of our knowledge, this is the �rst work that explicitly

proposes to use user-shared videos for connection discovery and the �rst work that proposes an

e�cient computation framework using user-shared videos applied to the Bag-of-Features Tagging

approach for connection discovery in social networks.

3 CONNECTION DISCOVERYWITH SHARED VIDEOS

This section introduces how to generate video representations for user-shared videos and learn

user pro�les, as well as how to recommend follower/followee relationships based on the discovered

connections. A general framework for connection discovery with user-shared videos is shown in

Fig. 2. Three major steps for the framework are included: generating video representations (step

1), learning user pro�les (step 2), and discovering connections (step 3). The video representations

are generated by treating videos as a sequence of keyframes. Thus, step 1 includes both keyframe

extraction from videos and keyframe labeling process using BoFT. With the video representations,

user pro�les thus can be learned by aggregating the videos shared by each user, as described in

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:5

Fig. 2. An overview of the proposed method for connection discovery with user-shared videos

step 2. Finally, the similarity among users can be obtained using user pro�les, and connections can

be discovered, as in step 3. The technical details for each step are described as follows.

3.1 Keyframe Extraction

A video can be regarded as a sequence of images, and most of them are very similar. Thus they

contain a lot of redundant information. Most videos shared by users have about 30 frames/second.

Storing and processing all the frames in a video requires large storage capacity and intensive

computation resources. Therefore, a common �rst step for most content-based video analysis

techniques is to segment a video into elementary shots and extract keyframes for each shot. The

videos can thus be represented by a sequence of keyframes, lowering the demand of both storage

and computation.

There are numerous keyframe extraction methods [14, 21], such as the HSV-based approach

and clustering-based approach. For simplicity, this paper utilizes the advantages of video coding.

Normally, encoded videos have I-frames which are encoded wholly and do not require other video

frames for decoding. And the other types of frames, i.e. P-frames and B-frames, are encoded using

relative information with respect to the I-frames. Here the paper uses the I-frames as keyframes,

thus reducing the complexity and increasing the computation speed.

3.2 Video Representation using BoFT

After the keyframe extraction process, a video can be e�ectively represented by a sequence of

keyframes. In order to extract information from videos and encode videos as vectors for subsequent

processing, this paper extracts visual features from keyframes and uses the BoFT approach to

generate the codebook for the keyframes. The video representations thus can be obtained by

integrating the keyframes of a video using the codebook. The video representation process is

described in details as follows.

3.2.1 Feature Extraction. Feature extraction is a process to obtain the local features, as in

step 2 of Fig. 3. One of the most common approaches for feature extraction is Scale-Invariant

Feature Transform (SIFT) [15], proposed by D. Lowe in 2004. There are mainly four steps, Scale-

space Extrema Detection, Keypoint Localization, Orientation Assignment and Keypoint Descriptor,

involved in the SIFT algorithm. Features extracted from an image are represented by several vectors,

and each vector represents one of the features of the image.

3.2.2 Feature Codebook Generation and Feature Coding. Codebook generation (step 3 of Fig.

3) is a process to obtain the visual words that can represent the features obtained in the feature

extraction step. It is a clustering process that groups similar features. This paper adopts a common

algorithm, k-means clustering [16], to group the feature vectors based on their visual similarity.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:6 X. Li et al.

Fig. 3. Video representation using BoFT for user-shared videos (Step 1 in Fig. 2)

Feature coding is the encoding of features with the visual words. Each feature in every image is

represented by a visual word in feature coding. The image is then represented by a feature vector

in the feature pooling. This process is carried out in step 4 of Fig. 3. A histogram that counts the

number of occurrences of each visual word in the image is used to represent an image.

3.2.3 Keyframe Clustering and Video Representation using BoFT. The goal of keyframe clustering

is to group keyframes with similar feature vectors. Each cluster obtained in this operation corre-

sponds to a group of similar objects. After obtaining the cluster, as in step 6 of Fig. 3, the images

in any clusters are assigned with the same BoFT label to re�ect that they are visually similar and

belong to the same group. Video representation is achieved using the BoFT approach. That is, each

video is represented by a histogram that counts the number of occurrences of each cluster label.

The keyframe label distribution of video v is represented by Lv :

Lv = {lv,1, · · · lv,k , · · · , lv,K }. (1)

Each element lv,k in Lv is the number of occurrences of label k among all of the keyframes of video

v .

3.3 User Profile and Connection Discovery

With encoded user-shared videos, the pro�le learning, as in step 2 in Fig. 2, is performed for each

user. The user pro�le Li can be generated by simply aggregating all the videos shared by the user

and taking the average of all the video features:

Li = {li,1, · · · li,k , · · · , li,K } =
∑

v ∈Vi

Lv

| |Lv | |
, (2)

where Vi is the set of videos user i has shared. With di�erent content and durations, the number of

keyframes can be varied among videos and the video vector Lv is normalized to 1. The user pro�le

obtained is the keyframe label distribution, which re�ects the visual features of the user-shared

videos.

When the user pro�le is obtained, the next step is to calculate the similarity between users based

on their user pro�les. The similarity between two users is calculated by the cosine similarity in

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:7

BoFT:

Si, j = S (Li ,Lj) =
Li · Lj

| |Li | | · | |Lj | |
, (3)

where Li and Lj are the distributions of user i and j, respectively. In [4] it is proved that two users

who share similar images have a higher Si, j . Since a video is a sequence of images, two users who

share similar videos will have a sequence of similar images and thus have a higher Si, j . Finally, a

similarity graph based on label distributions is generated as in Fig. 2, and the most similar J users

will be chosen for applications such as follower/followee recommendation.

3.4 Challenges and Limitations of BoFT

As real-world social media platforms require instant response to achieve a real-time experience,

it is desired to reduce the computation time from the instant when a user �nishes uploading a

video to the instant when the recommendations are generated. However, the keyframe extraction

and feature extraction take a long time and cannot be reduced. It is a challenge to accelerate the

proposed method for video processing to make it practical. Further, as shown in step 5 of Fig. 3,

tagging labels for keyframes consumes a lot of computational and storage resources because all

the data needs to be stored in memory and many iterations are involved in the clustering process.

A stand-alone machine de�nitely cannot e�ciently process millions of videos from millions of

users in real-world social networks. Motivated by these observations, the computation framework

proposed will be introduced in the next section.

4 PROPOSED DISTRIBUTED COMPUTATIONAL FRAMEWORK FOR VIDEO-BASED

TAGGING

This section describes how the original BoFT shown in Fig. 3 can be improved in a much more

e�cient fashion. Fig. 4 shows the proposed computation framework of connection discovery with

user-shared videos on a cloud platform. The framework consists of three parts: (a) Streaming

Processing Module; (b) Online Computation; (c) O�ine Computation. As in Fig. 4, the streaming

framework has the following steps:

• Step 1: When a user shares a video, Streaming Processing starts. User-side Streaming Module

segments the video into smaller chunks and uploads the chunks to servers by interacting

with the Tracker at the server side.

• Step 2: When one of the chunk servers receives a chunk of video, the server starts to extract

keyframes and visual features for the chunk through chunk processing. After each server

�nishes the chunk processing, it submits the results to a Master server, which is responsible

for aggregating information from all previous servers and for further processing.

• Step 3: When the Master server receives new data from chunk servers, the pro�le of the

video is contructed by combining the visual information of the chunks. User pro�les and

similarity can be updated, and thus the connections can be discovered.

The discovered connections are not only for follower/followee recommendation, but also for other

applications such as item recommendations, user-targeted advertising, etc. In the meantime, the

O�ine Computation periodically interacts with the servers for the chunk processing. The servers

of the chunk processing send the keyframes extracted from every chunk to O�ine Computation.

The o�ine computation periodically conducts the computationally intensive image clustering and

updates the clustering results to all servers for chunk process and the similarity and candidate lists

to the Master server for the purpose of maintaining connection discovery performance.

To further elaborate why such a framework (Fig. 4) is designed in this paper, two types of requests

from users are de�ned here: (1) user logs in and automatically receives recommendations from the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:8 X. Li et al.

Fig. 4. The proposed computation framework of connection discovery with user-shared videos. (a) Streaming

process to upload video chunks. (b) The online computation which contains five steps to e�iciently discover

connections. (c) The o�line computation periodically runs the clustering and generates sorted lists for the

online computation.

discovered connections; (2)user shares several videos and the connections are discovered within an

instant time interval. In terms of the �rst type, the framework can simply extract the discovered

connections from the list and send them back to the user as the response. For the latter case, the

videos have to be uploaded and processed and the user pro�les, as well as connections between

users, have to be updated. Before the analytic framework of Fig. 1, the �rst bottleneck for instant

response is the relatively long uploading time of the videos, depending on the size of the videos

and the network bandwidth. However, instead of waiting for the completion of uploading of the

whole-length video, it is desired to take advantage of the long uploading time and start processing

while the video is still uploading. The strategy is revealed in the Streaming Processing in the

proposed computation framework. The second bottleneck is the step 5 in Fig. 3, where the all the

keyframe images are clustered and the BoFT labels are assigned to the keyframes. Clustering of all

images is computationally intensive in that the amount of images is huge and generally it takes

many iterations in order to converge. This bottleneck limits the speed of the instant response the

system can achieve. The bottleneck is coped by dividing the anlytics into Online Computation and

O�ine Computation, as in the proposed system in Fig. 4.

The details of each part of the framework, Stream Processing, Online Computation and O�ine

Computation are explained as follows.

4.1 Video Streaming Processing

The durations of user-shared videos ranges from a minute to hours, and the sizes of the videos

thus vary from several megabytes to several hundred megabytes. It takes a relatively long time for

users to upload a video, for example, with around 1MB/s uploading rate by testing on YouTube,

a 100MB video takes 100s just to be uploaded. This framework desires to exploit the uploading

time for processing. Yet, as mentioned before, videos tend to have a lot of redundancy and not all

the video data is valuable and desirable for connection discovery. Therefore, the above-mentioned

unique characteristic gives us the opportunity to speed up the computation and make connection

discovery by 1) using streaming processing to upload and process the video chunk by chunk such

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:9

Fig. 5. Video Streaming Upload System (as Step 1 in Fig. 4)

that when one chunk is uploading previous chunks are being processed and 2) making connection

discovery even before the completion of video uploading.

4.1.1 Video Streaming Upload. In the last couple of years, video streaming download using

TCP/HTTP has become quite popular. And yet, video streaming upload is utilized in our framework.

The Video Streaming Upload system is shown in Fig. 5. It mainly consists of Streaming Module in

user side, Tracker and Slave Servers in server side. The User-side Streaming Module is responsible

for video data segmentation and chunk transmission. A video �le is generally composed of a

sequence header followed by many Group of Pictures (GOPs), where the decoding of frames can be

conducted within individual GOP, as shown in Fig. 6. The User-side Streaming Module segments

the videos aligned to the GOP boundaries such that each video chunk can be processed without

reliance on other video chunks. Then it interacts with the server to transmit the video chunks. In the

server side, Tracker server is responsible for listening to the uploading requests and coordinating

the scheduling of all the Slave Servers. In particular, user-side module makes uploading requests

through Tracker Server and the Tracker Server redirects the user-side module to the idle Slave

Servers that can process the uploading tasks and tracks the status of the tasks till they are �nished.

The Slave Servers are the ones that perform the transmission of chunks between the user side and

server side, and further processing of the chunks.

An example is presented in Fig. 5 to demonstrate the streaming process. When a user shares

a video through user device, as in step 1, the video is partitioned into N chunks by User-side

Streaming Module and all the chunks are prepared to be uploaded sequentially. The User-side

Streaming Module sends a request to the Tracker with the video information, as shown in step 2.

The Tracker initializes the uploading task and sends a con�rmation and an identi�er back, as in step

3. Once the user-side module receives the con�rmation, it starts to upload Chunk 1 by requesting

an upload with the identi�er to the tracker. The Tracker sends the URL of an idle Slave Server and

the user-side module uploads Chunk 1 to the corresponding Slave Server, as in step 4. Once the

�rst chunk �nishes uploading, the user-side module continues to request next upload, while the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:10 X. Li et al.

Fig. 6. video file structure

�rst chunk starts to be processed by the corresponding Slave Server. The timing of the process is

also shown in Fig. 5. The uploading of the N chunks happens sequentially while the processing

is conducted parallelly. Since the processing takes several times longer than the uploading, the

bene�t obtained is signi�cant.

The algorithms of the user-side streaming module and the tracker server in the server-side

module are shown in Algorithm 1 and Algorithm 2. In Algorithm 1, when the user starts to upload a

video, the module receives the video data and the tracker server URL as the arguments. The chunk

segmentation module segments the video into chunks according to the header information and

requests initialization of the uploading by sending the header of the video to the tracker server. It

expects to receive an identi�er as a response to identify this uploading session. Then uploading of

chunks starts in order by the requesting of the URL of the receiving server from the tracker server.

It ends the uploading session by sending an end code to the tracker server. In Algorithm2, when the

tracker server receives the initialization request, it starts to coordinate the transmission of chunks

and dispatches the URL of the corresponding receiving server back to the user when the user

requests to upload chunks. Once the receiving servers receive a complete chunk, the processing

module starts the processing in parallel.

4.1.2 Keyframe Extraction and Feature Extraction for Chunks. After each chunk �nishes upload-

ing, the server can send the chunk for processing. And to process multiple chunks in parallel,

the cloud is employed. In general, the master node will send each chunk to slave nodes and each

slave node processes a chunk till it �nishes and returns the computation result back to the master

for aggregation in the following step. The tasks for the slave nodes are keyframe extraction and

feature extraction for each keyframe. In order to do keyframe extraction in the slave nodes, the

header information of the video has to be passed to the slave nodes as well. And since the video

is partitioned according to the boundaries of GOPs, chunk video decoding is not a problem. The

keyframe extraction method is described in the previous section. As for the feature extraction, SIFT

features will be extracted for each keyframe of the chunk video and SIFT vector for each keyframe

will be obtained according to the SIFT feature codebook.

ALGORITHM 1: User-side Streaming Module

Input: The video V shared by user i , tracker_server_url

{header,{v1,v2, · · · ,vN }}← video_segmentation(V) ;

Identi�er← initialize_upload(tracker_server_url,header) ;

for vi ∈ {v1,v2, · · · ,vN } do

url← request_upload(tracker_server_url,Identi�er) ;

start_upload(url, vi) ;

end

status← end_upload(tracker_server_url,Identi�er) ;

4.1.3 Video Data Aggregation. There are two kinds of video data aggregation that need to be

done. One is to aggregate all the video chunks into a complete video, which is the user-shared

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:11

ALGORITHM 2: Tracker in Server-side Streaming Module

while header← wait_for_initialize() do

Identi�er← generate_identi�er(header) ;

respond_initialize(Identi�er) ;

Status← INITIALIZED ;

while true do

(Identi�er, Code)← wait_for_request_or_end() ;

if Code == END_CODE then

status← enquiry_upload_status(Identi�er) ;

break ;

end

url← generate_upload_url(Identi�er) ;

respond_request(url) ;

end

respond_end(status);

end

Fig. 7. Chunk process (as Step 2 in Fig. 4)

content on a social media site. This is conducted by concatenating the chunks consecutively and

combining the video header information into a video �le. The other is to aggregate the processing

results of the video. The video feature is the aggregation of all the feature vectors of the keyframes

by combining the results from chunk servers in a consecutive way.

4.2 Online Computation

The online computation deals with the process from the instant when keyframes of videos are

available to the instant when the recommendation is made. In the framework of this paper, the

online computation contains one online server to process users’ requests, while it is also �exible in

having many online servers to support many user requests. The online computation comprises

of four main parts: assigning the BoFT labels for the incoming keyframes, updating the pro�le of

each user, recalculating the similarity and sorting the list of discovered connections based on the

similarity.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:12 X. Li et al.

Fig. 8. Update user profile and similarity (as Step 3 in Fig. 4)

4.2.1 Video-based Non-user Generated Annotation. Generating labels for keyframes and video

representations for shared videos is conducted chunk by chunk in chunk processing as shown in

step 2 in Fig. 4. The details of the chunk processing are shown in Fig. 7. With the feature vectors of

all keyframes of a video available, each keyframe can be assigned with a label using BoFT. In general,

this should be conducted by reclustering all the keyframes available in the database to maintain a

good precision. However, since the number of all keyframes is very large, it is computationally

intensive. To alleviate the computation intensity, an e�cient algorithm is developed for the online

computation, while still maintaining comparable precision.

The o�ine computation will train a model using previously obtained keyframes and the chunk

process reads the clustering result from the o�ine computation and updates the cluster centroids

periodically. With the cluster centroids available, the chunk process compares the input keyframe

with all the cluster centroids and assigns the keyframe f with the cluster whose centroid is the

nearest to the keyframe with the Euclidean distance metric:

labelf = argmin
i

d (Ci , f), (4)

where Ci is the cluster centroid of cluster i .

With the label of each keyframe assigned, the video representation is simply obtained using

the histogram of all the clusters the video has, as described in the previous section. And the video

vector will be normalized later in order to deal with the problem of di�erent video durations.

4.2.2 Profile Regeneration and Similarity Update. As described in Section 3.3, the pro�le of user

i is de�ned by a vector Li and obtained by taking the average of all video vectors that belong to

user i . When user i posts a new video, the keyframe images will be assigned a BoFT label and the

pro�le of user i needs to be updated. This step is represented in step 3 in Fig. 4(a).

Users who have corresponding videos will acquire the corresponding BoFT labels, as shown in Fig.

9. Thus the corresponding user vector Li will be updated by adding video labels with normalization

in the following way:

Li = L′i +
Lv

| |Lv | |
, (5)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:13

Fig. 9. Profile update with an incoming normalized video label

where Lv is the video vector of the newly uploaded video. Since the video is processed chunk by

chunk, the user pro�le can still be updated without having to wait for all the chunks to �nish

processing. For example, user i , who has user pro�le L′i has posted a video and the video is

segmented into N chunks, in whichM chunks have already been processed. The video vector can

be represented simply as:

Lv = Lv,1 + Lv,2 + · · · + Lv,k + · · · + Lv,M , (6)

were Lv,k is the results returned by the server processing chunk k . When the user pro�le is obtained,

similarities between Li and all other users need to be updated as well.

If the similarity is purely recalculated without considering previous information then the com-

plexity will still be maintained as O (N (u)K), where N (u) is the number of users and K is the

dimension of the user pro�le, the distribution of labels. Here an e�cient incremental algorithm has

been developed. For example, user i , who has user pro�le L′i has posted a videov and the assignment

of the f th keyframe image is label k . So the number of label k of video v has is lv,k = l
′
v,k
+ 1. That

is

Lv = L′v + ∆Lv = (l ′v,1, l
′
v,2, · · · , l

′
v,k + 1, · · · , l

′
v,K). (7)

The similarity between user i and user j can be updated in constant time with an incoming keyframe

label from Eq. 3 as

Si, j =

L′i · Lj +
L′v ·Lj+lj,k
| |L′v | |+2l

′
v,k
+1

√

| |L′i | |
2
+ 2 ·

L′i ·L
′
v+li,k

| |L′v | |
2
+2lv,k+1

+ 1 · | |Lj | |

, (8)

where L′i · Lj , L
′
v · Lj , L

′
i · L

′
v and the norm | |L′i | |, | |L

′
v | |, | |Lj | | are already known. The deduction of

the incremental update is shown in detail in the Appendix.

In Eq. 8, the computation can be done in constant time by using the similarity and norm computed

previously and updating the dot products and norms as described above. The operation involved is

only scalar addition, which is di�erent from recalculating the similarity, where calculating the norm

and vector dot product are involved. Thus the complexity for calculating the updated similarity

with all other users reduces to only O (N (u)F), where F is the number of keyframes a video has and

normally has a level of magnitude smaller than the dimension K of the user pro�le.

4.2.3 E�icient Follower/Followee Recommendation. To discover connections for a user who has

just posted videos, the framework will generate the most similar J users from all N (u) users based

on their similarities. Heap search, whose complexity is only O (N (u)loдJ) is used to e�ciently

generate the top-J connections. It is also useful to create a more e�ciency by having some elegant

pruning for connection discovery. Because the o�ine computation has already generated sorted

lists, users that are impossible to be in the top-J, even with the increment on the similarity, can

be located and excluded in the calculation. The framework �rst calculates the similarity between

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:14 X. Li et al.

Fig. 10. Pruning in connection discovery for user L1 withM = 3 discovered connections. (L3 and L4 are not

necessary in sorting)

the user who triggered the request and the J users who are listed as the top-J connections only.

The pruning process happens while calculating the similarity. For example, in the Fig. 10 example,

M = 3 and the list is for user 1 with pro�le L1. While calculating the similarity between L1 and other

users, the framework starts calculating from the previous sorted list and maintains a minimum

similarity value, 0.2 in this example, during calculation of the �rst M similarities. Continuing to

calculate others, L4 in this example, the framework will compare the similarity with the minimum

value. If that similarity is even smaller than the minimum value, then there is no need to sort the

corresponding user L4 because its ranking must be overM . To formulate the pruning process, Ci

is used to denote the current top-M discovered connections for user Li , while C
′

i represents the

previous ones. If the following inequality is satis�ed for user Lp , it is not necessary to do the heap

search for Lp :

S (Li ,Lp) < min
q

S (Li ,Lq) ∀q ∈ C
′

i ,p < C
′

i (9)

Through this pruning process, the e�ciency of heap search to generate Ci will obviously improve

because the N (u) users needed in heap search decreases, and this will be very helpful for real-world

applications. In summary, the procedure of an e�cient online connection discovery framework is

described in Algorithm 3:

ALGORITHM 3: Online Connection Discovery

Input: The video V shared by user i

Output: Recommendations ~Ci for user i

for keyframe image vector ~x ∈ V do

∆Lv ← ~0 ;

label(~x) ← nearest_cluster(~x) ;

∆Lv ← ∆Lv+label(~x) ;

Lv ← Lv + ∆Lv ;

for Lj ∈ N
(u) do

S (Li ,Lj) ← updateSim(S (L
′

i ,Lj)) ;

end

end

~Ci = topJConnections(Lj) ;

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:15

Fig. 11. O�line computation for keyframe clustering

4.3 O�line Computation

As shown in Fig. 4(b), computationally intensive tasks are performed periodically in an o�ine cloud

platform, where Hadoop1 is used in this paper. As o�ine computation can have a relaxed time

requirement in the whole framework, it will perform the clustering on the cloud platform so that

the online computation can utilize the clustering result immediately. Besides the computationally

intensive parts, o�ine computation will also update the similarity and the sorted list time by time.

This section will present the details of the o�ine implementation on Hadoop.

4.3.1 Cloud-assisted Keyframe Clustering. This section presents a distributed framework of the

clustering algorithm, k-means, on Hadoop cluster, as shown in Fig. 11. The Hadoop cluster contains

one master node to coordinate the jobs and several slave nodes to execute the jobs submitted from

the client. Each slave node can have multiple workers to run part of the job. The input is a large �le

that contains lots of image vectors generated from feature extraction, which is represented in step

5 of Fig. 3. Each numeric vector represents an image. The �rst process is a map transformation in

Hadoop, as in step 1 in Fig. 11. Thismap transformation in each worker is to calculate the Euclidean

distance between each vector and all the centroids, and assign the vector to the cluster whose

centroid has the minimum distance with the vector. Once the assignments for all vectors are done,

the reduce step, as in step 2 of Fig. 11, can be performed to calculate the new centroid for each

cluster by combining the points within the same cluster. Thus the clustering will iterate until the

centroids converge. Once the clustering result is obtained, the o�ine computation will send the

result to the online computation and continue distribution calculation, as shown in step 3 of Fig. 11.

4.3.2 Generating Candidate Lists. As described above, the o�ine processing will be periodically

updated. Besides clustering in o�ine, similarity calculation and the sorted list (step 4 and 5 of Fig.

8(b)) for each user will also be updated once the clustering is done, such that the whole o�ine

processing is updated periodically. Once the clustering is done, the BoFT labels will be assigned

to the users who have corresponding images. With these BoFT labels, the framework can easily

construct the user distributions in a vector format by counting the occurrences of each label.

1Hadoop: https://hadoop.apache.org/.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:16 X. Li et al.

From Section 3.3, the similarity between two users Li and Lj is updated periodically based on

the cosine similarity in Eq. 3. The sorted list for each user Li can then be generated in descending

order according to the similarity between Li and all other users.

4.4 Communication between Online and O�line Computation

This section describe how the online and o�ine computations are connected and how they facilitate

an e�cient connection discovery. As shown in Fig. 4, communications between online and o�ine

happen in two places, when the image features are received and when the clustering results are

generated. A synchronization process from o�ine to online will also occur when the sorted lists in

the o�ine computation are updated. When the image feature vectors are obtained, the framework

distributes the features to o�ine and the o�ine computation will save them to bu�er for processing.

Once the bu�er is full or the preset time is up, the o�ine computation will combine all the old

images and the new images together to undertake the process from step 1 to step 3 of Fig. 4(b).

While the o�ine computation is generating the sorted lists for all users, the clustering results will

be sent to the online computation (step 3 of Fig. 4(b)). Once the online computation has received the

clustering results, it stores the results into memory in the online server and replaces the previous

clustering results. Once the o�ine computation is done, the sorted lists will also synchronize for all

users in the online computation so that the framework is also available for the �rst kind of request

described in Section 4.

5 PERFORMANCE EVALUATION

This section �rst presents the setup for the experiments and then introduces the social network

dataset used in the experiments. The experiment uses follower/followee recommendation to evaluate

the connections obtained with the proposed method. Some methods are implemented as a baseline

to compare their performance with the proposed framework using the four metrics de�ned in

this section. Finally, the evaluation results are presented to shows the e�ciency of the proposed

framework.

5.1 Experimental Setup

The dataset used in the experiments is collected from Twitter, a general social network which

allows users to share multiple forms of content, such as text, images, and videos. To evaluate the

discovered connections from shared videos by follower/followee recommendation, a set of 490

users are randomly selected using the Twitter API. There are 1,542 follower/followee relationships

among the set of users, and 35,330 shared videos by them are collected. These videos were initially

shared on various platforms such as YouTube and Vine, and the links to those videos were shared

as tweets on Twitter by the 490 users. Each video is shared by only one user. The 35,330 videos

have di�erent content, sizes and resolutions, and are good representatives of videos shared on

social media. For all the experiments, the ground truth follower/followee relationships are assumed

hidden, and the connections between users are discovered using only user-shared videos. The

recommendation of follower/followee relationships is based on the discovered connections and

compared with the ground truth for evaluation.

The proposed analytics and streaming framework are implemented. The experiments on the

proposed computation framework are performed in Amazon AWS clusters. For the Streaming

Processing, 9 VMs are deployed, one as master node and another 8 VMs as slave nodes. The

master node works as Tracker and the slave nodes works as Slave Servers as in Fig. 5. For the

Online Computation, one single machine is deployed to aggregate the results from Streaming

Process and update the user pro�le and connections incrementally. For the O�ine Computation,

another Amazon AWS cluster is deployed with 1 master node and 8 slave nodes to periodically

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:17

conduct image clustering and update the user pro�le and connections from scratch. Each node

has four virtual CPUs running at 2.4GHz, with an 16 GB RAM, a 250GB hard disk and a Gigabit

network interface card. Requests for uploading videos are from local machine. In order to evaluate

the framework, the experiments compares a baseline non-streaming BoFT and a keyframe-level

streaming framework proposed in [24] with the proposed streaming BoFT:

• Baseline: The baseline BoFT connection discovery framework shown in Fig. 3 is implemented

on a stand-alone machine to be compared with the proposed framework. The baseline BoFT

uses a non-streaming method to upload and process videos. The uploading process is in series,

and the computation starts when the videos are completely uploaded. The baseline runs the

complete process in a single machine and does not distribute any parts of the computations

in BoFT.

• Marlin: Marlin, proposed in [24], is a streaming data processing pipeline for content-based

video similarity search. Unlike our proposed streaming framework, Marlin employs keyframe-

level parallelism. The system acellerates the computation by distributing the feature extraction

of a certain video at keyframe level and further aggregates the keyframe features to get the

feature representation of the videos. However, the major bottleneck in video uploading and

keyframe extraction is not dealt with in the system.

• Proposed: The proposed BoFT framework uses a streaming method to upload and process

videos. The uploading process segments each video into approximately equal chunks and

uploads the chunks in series to di�erent servers for distributed processing. When one chunk

�nishes uploading, the processing of this chunk starts while the next chunk starts to upload.

The proposed BoFT framework further improves the scalability by using online computation

to update user pro�les and similarity and generates recommendations instantly, while using

o�ine computation to distribute the clustering process via Hadoop MapReduce periodically.

5.2 Evaluation Metrics and Results

The experiments in this paper use three metrics to evaluate the performance of the proposed

framework. The �rst one is the processing time, tp , which is measured from the time a video starts

to upload to the time that recommendation is made, as shown in Fig. 4. The second one is the

precision for evaluating how accurate the recommendations are. Precision is de�ned as the number

of true predicted follower/followee relationships (Tp) divided by the total number of predicted

follower/followee relationships (Tp + Fp):

Precision =
Tp

Tp + Fp
, (10)

where Fp is the number of falsely recommeded follower/followee relationships. Also the metric of

measuring the processing time per video tpi =
tp
n
is given. There is another variable, which is the

percentage of total keyframes extracted from videos. The experiment measures the recommendation

precision by using partial video data to demonstrate how much video data is necessary to achieve

comparable precision. As this paper claims a the framework that provides an e�cient connection

discovery, the framework is expected to have a fast and stable processing time for each video input.

5.2.1 E�ectiveness of Video-based Connection Discovery. In order to show the e�ectiveness

of the proposed method for connection discovery using user-shared videos, an experiment for

evaluating the recommendation precision is performed. In Fig. 12, the precision of the video-

based recommendation is compared with random recommendation. As expected, for the proposed

connection discovery with user-shared videos, as the number of recommendation made increases,

the precision of recommendation goes down. And the video-based recommendation has 50% higher

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:18 X. Li et al.

Fig. 12. E�ectiveness of video-based connection discovery

Fig. 13. Processing Time on Twi�er with Non-stream and Stream Processing

precision than random recommendation on average when the number of recommendations is

below 10, which validates the feasibility of the proposed method.

5.2.2 Processing Time for Streaming. In order to investigate the bene�t of the proposed Streaming

Processing, the processing time for streaming is measured separately by experiment. The processing

time in the experiments includes the video uploading time and the chunk process time. The

experiment focuses on the processing time comparison of non-streaming method and streaming

method. For baseline non-streaming BoFT, the computation starts when the whole video �nishes

uploading, till step 5 in Fig. 2 where visual information is extracted. And for the proposed framework,

the uploading and computation is performed in streaming style, in which the videos are segmented

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:19

Fig. 14. Overall processing time of Baseline, Marlin and the proposed streaming framework

into chunks of about equal size. The chunk size is set to about 10MB in this experiment. The

chunks are uploaded in series and in order, meaning when one chunk �nishes uploading it will

be processed and in the meanwhile the next chunk starts to upload. In terms of investigating the

processing time of the baseline non-streaming framework, and proposed streaming framework,

the experiment �rst randomly samples 100 videos and examines the processing time of each video.

Fig. 13 shows the processing time of the baseline non-streaming BoFT and proposed streaming

BoFT introduced above. It is observed that when the video size is very small, the process time of

the proposed streaming framework is actually slightly longer than the baseline non-streaming

framework due to the overhead of the system. However, when the video size is larger than 10MB,

the advantages of the proposed streaming framework start to be revealed. And as the video size

increases, it is apparent that the proposed streaming BoFT framework outperforms the baseline

non-streaming BoFT framework. The proposed framework takes only 35% as much time as the

non-streaming framework on average in terms of the processing time.

5.2.3 Processing Time for Overall Framework. In this experiment, the proposed overall streaming

framework, including Streaming Processing and Online/O�ine Computation, are comparedwith the

Baseline, single machine framework, and Marlin, keyframe-level streaming. The processing time of

the three methods is shown in Fig. 14. From the results, it can be seen that Marlin indeed outperforms

Baseline framework, spending only 63% as much time as Baseline. However, our proposed streaming

framework signi�cantly outperform these two methods. The proposed streaming framework spends

only 50% as much time as Marlin, and only 32% as much time as Baseline. The results validates the

superior acceleration of our proposed streaming framework and and the contribution of this work.

5.2.4 Processing Time Per Video. As described in the beginning, tpi is the processing time divided

by the number of videos. The experiment evaluates the average processing time of videos that fall

into a particular video size range. The average processing time measures the time from when an

video starts to upload to when the connections are found. The following description in this section

will simply use the average processing time to denote the processing time per video. Fig. 15 shows

the average processing time ratio with the processing time of the proposed framework divided by

the baseline framework. The average video size of all videos in the dataset in the experiment is

65MB. As shown in Fig. 15, on this social network the average processing time per video of the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:20 X. Li et al.

Fig. 15. Ratio of processing time per video between proposed framework and baseline

Fig. 16. Precision using partial keyframes of video

baseline non-streaming BoFT framework is evidently longer than that of the proposed streaming

BoFT framework when the video size is beyond 20MB size range. In fact, the proposed framework

takes only 32% as much time as the baseline non-streaming framework to upload and process a

video on total average. For time-sensitive applications, it is very important to rapidly learn factors

for new items (e.g. event updates, tweets, images) so that the applications can give a satisfactory

user experience and attract more users [1, 9]. With the stable and low processing time per video,

the framework can easily scale and handle large amounts of data in an e�cient fashion.

5.2.5 Precision with Partial Video Data. This experiment evaluates the precision of recommended

relationships compared with the ground truth on the Twitter dataset with partial video data

information. As discussed previously, the videos generally contain much redundancy and by

exploiting partial video data connection discovery can be made without even waiting for the videos

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:21

to �nish uploading. Since the keyframes are generally extracted in order in our framework, the

percentage of keyframes used in this experiment are those starting from the beginning. That is with

10% of total keyframes, the �rst 10% of keyframes are used, and so on. In this manner, we evaluate

at what percentage of the videos having been uploaded can the recommendation be made. It is

shown in Fig. 16 that with more complete video data the precision of recommendation is better and

with only 70% of video data the precision is almost as good as using complete video data. Therefore,

instant response can be made exactly when, or even before, the user �nishes uploading the video.

6 DISCUSSIONS

This section discusses potential problems and highlights future research directions. The general

ideas of the analytics is based on the intuition that the videos users share are normally what they

like, e.g. it is the case in Twitter and Instagram. Thus, the users’ preferences can be inferred from

their shared videos, and follower/followee relationships can be recommended based on similar

preferences. The proposed methods can be used in applications that have such property. The paper

mainly focuses on the visual information of a video, whereas other multimedia information, such as

audio and textual information, could also be utilized for connection discovery. This other multimedia

information could be incorporated to help understand the content of a video more deeply and �nd

the similarity between users more e�ectively. For example, one of the most important types of

information is audio. It is observed during the experiment that a proportion of videos have only

static visual images with music, such as popular songs. Such videos cannot be handled by the

proposed approach as the visual information of the video is not representative, whereas th audio

information has high distinctiveness.

The streaming process proposed in the paper is an e�cient technique for processing multimedia

data in applications that require instant response. These videos used in the experiments have

di�erent durations, qualities and content, and are therfore good representatives of what is being

shared on social media today. The proposed framework can be easily applied to di�erent social

media platforms with video sharing features for connection discovery, and many time-sensitive

applications that depend on connections become possible. Furthermore, the video representation

using BoFT can be saved as video signatures, and when users upload videos duplicated in the

database, the video signatures can be directly used without going through video representation

process.

To deploy the streaming framework to practical systems, some insights are provided here. First,

in the proposed framework, multiple servers are used for video streaming uploading and chunk

video processing. The chunk video processing in the experiment is mainly based on CPUs. However,

with GPU parallelism, the video processing for each chunk can be further improved. Second, task

scheduling is an important topic in big data system. The scheduling policy of the tracker server

in the proposed framework is currently �rst-come-�rst-serve. It may not be an optimal solution

since scheduling a large video request before several small videos might decrease the overall

user satiesfaction. This can be replaced with more sophisticated policies depending on di�erent

applications. Also, it would be worthwhile to investigate how to minimize the overhead among the

servers, such as optimizing the chunk size. Lastly, the streaming processing and online computation

serve as a front-end of a real-time system, where the data are collected and analyzed. On the

back-end, both the video data and video representations need to be stored in e�cient database.

Also, large-scale data move between the database and map-reduce servers in o�ine computation

has to be maintained periodically.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

39:22 X. Li et al.

7 CONCLUSION

This paper proposes to employ user-shared videos for connection discovery by using the BoFT

method to generate video representations. The e�ectiveness has been proved through experiments.

An e�cient computation framework is proposed for connection discovery using user-shared videos.

The framework is designed separately by Steaming Processing, Online and O�ine Computation.

Streaming Processing is proposed to utilize the video uploading time and speed up the process-

ing. The computationally intensive parts are handled o�ine on cloud platform, and the Online

Computation incrementally performs updating for connection discovery in an e�cient fashion.

Experiments show that the BoFT method with user-shared videos can achieve signi�cantly higher

precision than random recommendation on average in Twitter dataset. The proposed framework

takes on average only 30%∼50% as much time as existing frameworks in terms of the processing

time. Also the recommendation precision with partial video data is evaluated. It is concluded that

even without completion of full video uploading, the recommendation can be made. The advantages

of the proposed framework with shorter processing time and less video data make it suitable for

time-stringent applications in the real world.

APPENDIX

In this appendix, the incremental implementation of similarity updating between user i and user j

is explained as follows. With an input of video v belonging to user i , the similarity between user i

and user j is updated as

Si, j =
L′i · Lj +

Lv ·Lj
| |Lv | |

| |Li | | · | |Lj | |
, (11)

where L′i · Lj is already known. The calculations of Lv · Lj , | |Lv | | and | |Li | | are implemented

incrementally. That is,

Lv · Lj = L′v · Lj + lj,k , (12)

where L′v · Lj is the dot product of the previous result. The two norms are updated as

| |Lv | |
2
= | |L′v | |

2
+ 2l ′v,k + 1,

| |Li | |
2
= | |L′i | |

2
+ 2 ·

L′i · Lv

| |Lv | |
+ 1.

(13)

where | |L′v | | and | |L
′
i | |

2 are already known and L′i · Lv is updated in the same way as Lv · Lj . With

the above updates, the similarity update with an incoming keyframe label of a video can be done in

constant time, as in Eq. 8.

ACKNOWLEDGMENTS

This work is supported by HKUST-NIE Social Media Lab., HKUST.

REFERENCES

[1] Deepak Agarwal, Bee-Chung Chen, and Pradheep Elango. 2010. Fast online learning through o�ine initialization

for time-sensitive recommendation. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 703–712.

[2] Vinti Agarwal and KK Bharadwaj. 2013. A collaborative �ltering framework for friends recommendation in social

networks based on interaction intensity and adaptive user similarity. Social Network Analysis and Mining 3, 3 (2013),

359–379.

[3] Ming Cheung and James She. 2014. Bag-of-Features Tagging approach for a better recommendation with social big

data. In IMMM 2014, The Fourth International Conference on Advances in Information Mining and Management. 83–88.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

A Distributed Streaming Framework for Connection Discovery Using Shared Videos 39:23

[4] Ming Cheung, James She, and Zhanming Jie. 2015. Connection discovery using big data of user-shared images in

social media. Multimedia, IEEE Transactions on 17, 9 (2015), 1417–1428.

[5] Eric Gilbert. 2012. Predicting tie strength in a new medium. In Proceedings of the ACM 2012 conference on Computer

Supported Cooperative Work. ACM, 1047–1056.

[6] Eric Gilbert and Karrie Karahalios. 2009. Predicting tie strength with social media. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 211–220.

[7] Liang Gou, Fang You, Jun Guo, Luqi Wu, and Xiaolong Luke Zhang. 2011. Sfviz: interest-based friends exploration

and recommendation in social networks. In Proceedings of the 2011 Visual Information Communication-International

Symposium. ACM, 15.

[8] William H Hsu, Andrew L King, Martin SR Paradesi, Tejaswi Pydimarri, and Tim Weninger. 2006. Collaborative and

Structural Recommendation of Friends using Weblog-based Social Network Analysis.. In AAAI Spring Symposium:

Computational Approaches to Analyzing Weblogs. 55–60.

[9] Junzhong Ji, Zhiqiang Sha, Chunnian Liu, and Ning Zhong. 2003. Online recommendation based on customer shopping

model in e-commerce. In Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on. IEEE,

68–74.

[10] Zhanming Jie, Ming Cheung, and James She. 2015. A cloud-assisted framework for bag-o�eatures tagging in social

networks. In IEEE 4th Symposium on Network Cloud Computing and Applications.

[11] Jason J Jones, Jaime E Settle, Robert M Bond, Christopher J Fariss, Cameron Marlow, and James H Fowler. 2013.

Inferring tie strength from online directed behavior. PloS one 8, 1 (2013), e52168.

[12] R. Kuschnig, I. Ko�er, and H. Hellwagner. 2011. Evaluation of HTTP-based request-response streams for internet video

streaming. In Proceedings of the second annual ACM conference on Multimedia systems. ACM, 245–256.

[13] Xiaopeng Li, Ming Cheung, and James She. 2016. Connection Discovery using Shared Images by Gaussian Relational

Topic Model. In International Conference on Big Data. IEEE, 931–936.

[14] Gentao Liu, Xiangming Wen, Wei Zheng, and Peizhou He. 2009. Shot boundary detection and keyframe extraction

based on scale invariant feature transform. In Computer and Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS

International Conference on. IEEE, 1126–1130.

[15] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints. International journal of computer

vision 60, 2 (2004), 91–110.

[16] Jirı Matoušek. 2000. On approximate geometric k-clustering. Discrete & Computational Geometry 24, 1 (2000), 61–84.

[17] Xueming Qian, He Feng, Guoshuai Zhao, and Tao Mei. 2014. Personalized Recommendation Combining User Interest

and Social Circle. IEEE Transactions on Knowledge and Data Engineering 26, 7 (2014), 1763–1777.

[18] Jitao Sang and Changsheng Xu. 2012. Right buddy makes the di�erence: An early exploration of social relation analysis

in multimedia applications. In Proceedings of the 20th ACM international conference on Multimedia. ACM, 19–28.

[19] Xiance Si and Maosong Sun. 2009. Tag-LDA for scalable real-time tag recommendation. Journal of Computational

Information Systems 6, 1 (2009), 23–31.

[20] Yang Song, Ziming Zhuang, Huajing Li, Qiankun Zhao, Jia Li, Wang-Chien Lee, and C Lee Giles. 2008. Real-time

automatic tag recommendation. In Proceedings of the 31st annual international ACM SIGIR conference on Research and

development in information retrieval. ACM, 515–522.

[21] C Sujatha and Uma Mudenagudi. 2011. A study on keyframe extraction methods for video summary. In Computational

Intelligence and Communication Networks (CICN), 2011 International Conference on. IEEE, 73–77.

[22] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling relationship strength in online social networks.

In Proceedings of the 19th international conference on World wide web. ACM, 981–990.

[23] Xing Xie. 2010. Potential friend recommendation in online social network. In Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom).

IEEE, 831–835.

[24] N. Zhu, W. He, Y. Hua, and Y. Chen. 2015. Marlin: Taming the big streaming data in large scale video similarity search.

In International Conference on Big Data. IEEE, 1755–1764.

[25] Jinfeng Zhuang, Tao Mei, Steven CH Hoi, Xian-Sheng Hua, and Shipeng Li. 2011. Modeling social strength in social

media community via kernel-based learning. In Proceedings of the 19th ACM international conference on Multimedia.

ACM, 113–122.

Received February 2017; revised May 2017; accepted June 2017

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 9, No. 4, Article 39. Publication date: May 2017.

