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Abstract—Predicting the virality of contents is attractive for
many applications in today’s big data era. Previous works mostly
focus on final popularity, but predicting the time at which content
gets popular (virality timing), is essential for applications such
as viral marketing. This work proposes a community-aware
iterative algorithm to predict virality timing of contents in social
media using big data of user dynamics in social cascades and
community structure in social networks. From the continuously
generated big data, the algorithm uses the increasing amount of
data to make self-corrections on the virality timing prediction
and improve its prediction. Experimental results on viral stories
from a social network, Digg, prove that the proposed algorithm
is able to predict viralty timing effectively, with the prediction
error bounded within 30% with 20% of data.

Index Terms—virality timing, virality prediction, community
structure, social cascade, big data, social networks

I. INTRODUCTION

Social media are now an integral part of our lives. People
post and share content on social networks such as YouTube,
Facebook and Twitter everyday. The content shared can be
in the form of video, news, or images, among many others.
While most online contents do not reach a lot of people, some
can become viral and reach thousands, or even millions. One
example is Gangnam Style, the popular Korean song which
became a global hit, which is viewed more than 1 billion times
in YouTube in a year. Fig. 1 (a) shows the popularity growth of
the song. Another example is a story in Digg, a social network
for sharing news or stories, which received more than 10000
votes in the first 140 minutes after it was published, as shown
in Fig. 1 (b).

Virality of a piece of content can be taken as the targeted
number of views, shares or votes for the content. In today’s
big data era, various information on online contents can be
collected. Predicting content virality is attractive in many
applications, e.g., in online marketing, predicting the number
of audience reached gives a useful measure of the effectiveness
of the marketing campaign. However, in such applications, the
time at which the advertised content becomes popular is more
important than the final popularity, i.e. knowing the virality
timing - the time at which the content can reach the desired
target - allows the campaign organiser to adjust the marketing
duration. This translates to cost-effectiveness of the marketing
campaign.

Most of the previous works focus on the final popularity of
content, but do not consider its virality timing. The challenge
here is to accurately predict the virality timing of online

Fig. 1: Examples of viral content: (a) Gangnam Style, (b)
popular story on Digg

contents in the early stages of their growths. This paper aims
to solve the problem by using users’ sharing dynamics and
the community structure in social networks to model the
population growth in time associated to a piece of content,
and thus predict virality timing for the piece of content.

The rest of the paper is organised as follows. Related work
in the topic is discussed in Section II. Section III presents the
concept of social cascades, and how they, along with commu-
nity structure, relate to virality timing. The proposed algorithm
is detailed in Section IV, and is followed by experimental
results that evaluate its performance in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

Content properties and users’ social interactions in the early
stages of popularity growth have been proven to be highly
correlated with the final content popularity [1], and are in-
vestigated for their effectiveness in predicting content virality
[2]. Content features like author, tags, length and retweet
count are proven to contribute to content virality [3] [4] [5]
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[6]. These works present viable approaches to predict content
virality, but they do not consider the time at which the content
becomes viral (virality timing). A commonly found approach
in the literature is time series analysis [7] [8], which proves
that temporal patterns correlate with content popularity, but
so far has not been employed in addressing the issue of
virality timing. Recent work formulates virality prediction as
a sequence of binary classification problems while a cascade
is tracked over time and identifies features that contribute
to content popularity [9]. While it presents some interesting
findings, the prediction is still based on the final popularity,
and does not focus on predicting the virality timing.

The main focus of most of the existing works is on the
final content virality. However, it is also imperative to consider
when such popularity can be reached. Our previous work
incorporated cascade dynamics in social networks to predict
virality timing [10]. This paper is an extension of the work
and incorporates the underlying community structure of social
network to predict virality timing. This is achieved through
an iterative algorithm that considers community structure and
social network dynamics obtained from the big data generated
by user interactions, and self-corrects its prediction in each
iteration. To the best of our knowledge, this is the first attempt
to predict virality timing using both social network dynamics
and community structure.

III. PREDICTING VIRALITY TIMING

In this section, social cascade and basic reproduction number
are defined. Their relationship with virality timing is ex-
plained, followed by a description of how community structure
can be used to measure virality timing.

A. Social Cascades

A social cascade is a process of information diffusion in a
social network [11]. An example of a social cascade in Flickr
is shown in Fig. 2, in which each node (i.e., a user) is sharing
a common content (i.e., photo) to other nodes in a social
graph. Node A, who first likes a photo P , is the initial node
(seed) and is considered as generation 1 in a social cascade.
For a social cascade to form, two users must have a social
connection (e.g. friends or followers) in the social graph first,
either bi-directional or uni-directional. In Fig. 5, nodes B and
C also like photo P after node A does, and they already have
social connections with node A before liking P . Node A is
said to infect nodes B and C, and both nodes are considered
as generation 2 in the social cascade. Similarly, node F is
considered as generation 3 after being infected by node C.
The concept of social cascades is not just applicable to one
social network. Digg adopts a similar mechanism as in Flickr.
The friends of a voter can see the story that the voter votes
for and can vote for the story as well, thus forming a social
cascade.

Exposure to top news from followed people or friends, as
shown in Fig. 3, allows an ongoing cascade to grow. However,
social network mechanisms such as recommended or recently
popular news enable nodes which are not connected to the
infected nodes to also be infected. In this case, these nodes

Fig. 2: Social cascade.

Fig. 3: Highlighted/recommended content from mechanisms
that continue a cascade (solid line) and create multiple cas-
cades (broken line).

will be considered to be seeds of new social cascades. Fig.
4 shows this phenomenon. Cascade size, i.e. the number of
infected nodes in a cascade, is a measure of the content’s
virality. The proposed algorithm measures a piece of content’s
virality by summing the size of all of its social cascades. By
measuring cascade size in time, a content’s popularity growth
can be known, and its virality timing can be predicted.

B. Basic Reproduction Number

The basic reproduction number, R0, is defined as the ex-
pected number of secondary infections resulting from an
infected node in a cascade. In epidemiological models, if R0 >
1, one infected node will infect more than one node and the
cascade size will grow. Examples are Fig. 5 (a) and the solid
line in Fig. 5 (d). The cascade grows fast with the generation.
R0 = 1 is the critical case where the cascade grows linearly
with the generation, as shown in Fig.5 (c) and the dotted line
in Fig.5 (d). If R0 < 1, the number of infected nodes will
decrease for each subsequent generation and the cascade will
fizzle out before it can infect many nodes. Examples are shown
in Fig.5 (b) and the dashed line in Fig.5 (d). A viral piece of
content will infect more nodes in one generation, resulting in
a higher R0.
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Fig. 4: Extracting social cascades from big data

Fig. 5: Social cascades when (a) R0 > 1, (b) R0 < 1, (c)
R0 = 1, and (d) the prediction curves.

The theory of epidemiological models from [12] shows that
R0 in a network is given by:

R0 = ρ0(k2)/(k)2, (1)

where ρ0 = βγk. β, γ are the transmission rate and infection
duration respectively, while k is the node degree, and k
represents the mean value of the node degree. [11] states that
the basic reproduction number R0 can be obtained by counting
the number of infected nodes directly from the seed. Eq. 1
is tested with more than 1000 shared pictures in Flickr over
different social cascades, with an accurate result.

The growth of a cascade is affected by different factors:
content, seed, resharer, cascade structure and temporal features

[9], which can be captured by R0. For example, more viral
content has a higher β. The properties of the seed and
resharers, as well as the cascade structure, can be captured
by k. By obtaining an estimate of the value of R0, it is
also possible to model the cascades’ behaviors. Cascades’
growth in time can be modelled and thus virality timing
can be predicted. However, R0 obtained at the early stages
of the content’s popularity growth may not be an accurate
representation of the eventual popularity, as early infections
may not accurately capture the actual infection dynamics of
the content. This limitation motivates the iterative structure of
the algorithm, where R0 is updated in each successive iteration
as more available data can better capture the actual dynamics.
Thus, R0(t) is used to denote the basic reproduction number
in an iteration at time t.

C. Community Structure and Content Virality

Similar users in a social network tend to connect with one
another and form a community. Users belonging to the same
community are more likely to be friends with one another,
and also have many mutual friends [13]. Recent work shows
that the more viral a piece of online content is, the more
communities it will penetrate [14]. This observation presents
qualitatively an additional angle to measure content virality,
which can potentially improve the performance of the previous
prediction algorithm. A viral content may infect nodes in
different communities, and nodes in those communities will
infect others in the same community or even nodes in other
infected communities.

With the basic reproduction number, the qualitative eval-
uation of virality can be turned into quantitative, i.e., by
assigning each community with its own R0, the infection
dynamics in each community can be captured. Cascades’
growth in each community can then be modelled to obtain
the virality timing prediction. Thus, R0,c(t) is used to denote
the basic reproduction number of community c in an iteration
at time t. Fig. 6 shows how a piece of content can spread
within a single community, and also from one community to
another in a simple social network through weak ties between
communities. In this case, a social cascade may extend to
different communities. The first node in a different community
infected in this way is considered as the seed of a new cascade
in the community. This is because each community is assigned
its own R0, and for R0 to model the content’s popularity
growth in the community, all infections in the community,
but not those outside, need to be considered.

With a community detection algorithm, nodes in a social
network can be grouped into separate communities. Cascade
growth in each community can then be modeled, and by
summing up a content’s popularity growth in all communities,
its virality timing can be predicted.

IV. THE PROPOSED COMMUNITY-AWARE PREDICTION
ALGORITHM

In this work, users’ sharing dynamics and community structure
in social networks are used to predict virality timing, the time
at which a certain content will reach a desired number of target
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Fig. 7: Stages of the proposed algorithm.

Fig. 6: Infections spreading to different communities

audience. A 5-stage iterative algorithm is designed to achieve
this purpose. Fig. 7 shows each stage of the algorithm. Big
data on user activities and community structure of the social
network is continuously extracted automatically. Information
on the community structure is continuously updated as new
users are identified. The extracted data is used to update R0

periodically. The R0 of each community is then used to model
how infection spreads in the community, and the prediction for
each community is summed up to get the popularity growth in

time of a single content in the social network. Consequently,
virality timing prediciton for the content can be obtained.
The algorithm then checks whether stopping conditions have
been satisified, and if not, loops back to updating community
dynamics.

A. Extracting Information from Big Data
Extraction of information from the big data of social network
is an ongoing process. For a piece of content of interest, the
algorithm continuously scans the social network and extracts
information related to the content, such as the user reposting
the content, the original poster, and its time. In this way,
cascades formed in the social network can be extracted. When
new users are extracted, they are placed into their respective
communities accordingly. The Louvain algorithm is used here
for large-scale community detection [16]. While community
detection is essential, which algorithm to be selected is not
the focus here.

B. Updating Community Dynamics
Unlike Stage A, this stage and all the subsequent stages are
gone through periodically, with intervals T0. As mentioned
previously, R0 can be obtained by counting the number of
infected nodes directly from the seed. Fig. 6 shows that in-
fections may penetrate through different communities through
weak ties between communities. Nodes infected in this way
are considered as seeds of new cascades for R0 to model the
content’s popularity growth in the community accurately. A
limitation of the previous algorithm is the assumption that
there are an infinite number of nodes to be infected in the
social network. Community detection addresses this limitation
as the size of each community can be obtained in Stage A and
a valid limit of each community’s prediction value can be set.

C. Virality Timing Prediction for Each Community
In the third stage, community structure and R0 of a community
are used to obtain a content popularity growth prediction in
the community. The predicted number of infected nodes in
community c at time t for a future time t′, n′c(t, t

′), can be
modelled by the sum of a geometric series [15]:

n′c(t, t
′) = nc(t) +

k(t,t′)∑
j=1

∆nc(t) · (R0,c(t))
j , (2)
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where nc(t) is the current number of infected nodes, and
∆nc(t) is the number of newly infected nodes at time t
in community c. The number of samplings that would have
occured at future time t′, k(t, t′), is given by:

k(t, t′) = b t
′ − t
T0
c. (3)

As the size of each community is known, the prediction
value of any community c can be limited to the size of the
community sc.

n′c(t, t
′) =

{
sc n′c(t, t

′) ≥ sc
n′c(t, t

′) n′c(t, t
′) < sc

(4)

D. Predicting Virality Timing from Multiple Communities

The growth prediction for each community is summed up
to obtain the growth prediction for the content at time t′,
N ′(t, t′).

N ′(t, t′) =

L(t)∑
c=1

n′c(t, t
′), (5)

where L(t) is the number of communities identified as at the
current time t. Hence, the predicted virality timing, t(N), is
the soonest time at which N ′(t, t′) will reach or go beyond a
given viral target N , which could be computed by solving the
following:

t(N) = arg min
t′
N ′(t, t′) ≥ N (6)

E. Stopping Conditions

The algorithm stops if at least one of two stopping conditions
(C1 or C2) are fulfilled:

C1: the number of currently infected nodes, N(t), is
higher than the viral target, N , and no more pre-
diction is needed:

N(t) ≥ N (7)

C2: the current time t is longer than a reasonable time
Tout defined by the user:

t ≥ Tout (8)

In applications where time determines costs and expenses, e.g.
viral marketing, the operation should be terminated to reduce
incurred expenses if the viral target still has not been reached
after a reasonable time Tout has passed. Parameters used in
the algorithm are summarized in Table I.

V. EXPERIMENTAL RESULTS

The performance of the algorithm is evaluated in this section.
A benchmark error value E is defined as the percentage of
deviation from the ground truth (i.e., the actual time to reach
the viral target) [17]:

E = |t(N)− tGT |/tGT . (9)

where t(N) is the predicted virality timing and tGT is the
ground truth. A smaller E implies a more accurate virality

TABLE I: Parameters in algorithm

Parameters Definition
R0(t) basic reproduction # at time t
N(t) # of infected nodes at time t for content
L(t) # of communities identified at time t
nc(t) # of infected nodes at time t in community a

∆nc(t) # of newly infected nodes at time t in community a
t′ a future time for the prediction

k(t, t′) # of samplings up to future time t′

T0 prediction interval
n′
c(t, t

′) predicted na(t) at time t for future time t′

sc size of community a
N ′(t, t′) predicted N(t) for future time t′

N viral target
t(N) minimum time needed to reach N
Tout user-defined timeout period

timing prediction. Measurements of E over time show a trade-
off between available data and prediction error. More data is
available in a prediction at a later time and can reduce E, but
the prediction’s value may be less significant as it is closer to
the ground truth. A good algorithm should give a prediction
within a reasonable bound of error range at an earlier time such
that the prediction will be useful for practical applications.

A. Real Dataset from Digg
Real data from a social network, Digg, is used to evaluate the
proposed algorithm’s performance. The dataset contains infor-
mation on seed users, resharers, and the timings of each post
or reshare. 3553 stories from 2006 and 2009 are covered, and
139410 users are involved. A smart local moving algorithm for
the Louvain algorithm [18] is used to detect communities in
the dataset based on users’ friendship. 791 communities are
formed in this way, with the largest community containing
35311 users.

Fig. 8 shows growth predictions of the previous algorithm
in [10] and the proposed algorithm for the most viral story
in the dataset, when there is 40% and 80% data available,
respectively. The viral target N is set to be 15000. It can
observed that E decreases as more data becomes available.
E for the proposed community-aware algorithm is 10.4% less
than that of the previous algorithm as shown in Fig. 8 (a),
while the improvement in E decreases as more data becomes
available, as shown in Fig. 8 (b).

In order to compare the general performance of the two
algorithms, E of both algorithms for predictions of the 10%
most viral stories are plotted in Fig. 9. Similar trends can be
observed: E decreases as more data becomes available, and the
performance improvement of the proposed community-aware
algorithm decreases with more data. For the same viral stories,
the proposed community-aware algorithm can give predictions
with 31% lower E than the previous algorithm. Based on Fig.
9, it can be concluded that the prediction error of viral stories
for the proposed community-aware algorithm can be bounded
within 30% with 20% of data.

VI. CONCLUSION AND FUTURE WORK

This work has extended [10] to predict the time at which a
piece of content can reach a given viral target. An iterative



6

Fig. 8: Time and N(t, t′) of the most viral content in Digg
when there is: a) 40% and b) 80% data available.

Fig. 9: The values of E for viral contents in Digg

and self-correcting algorithm is proposed to predict virality
timing by taking advantage of an awareness of community
structure in a social network from the big data of user sharings
in the social network. Experimental results using real dataset
from Digg prove that the algorithm works well in practical
situations, in which the prediction error is reduced by 31%
compared to the previous algorithm, and is bounded within
30% with 20% of data. More datasets from different social
networks can be used in an extension of this work to obtain
a more comprehensive evaluation of the algorithm.

A number of directions are possible for future continuation
of the work. Characterization of weak and strong ties between
nodes can model information diffusion in a social network
better, and can characterize infections within and between
communities, allowing a better prediction result. Different
approaches on how a community is defined, e.g., based on
user interests, conversation between users, etc, are also worth
exploring, as different definitions will result in different com-
munities being formed, thus affecting the prediction result.
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